Fast Crypto Lab is a research group within National Taiwan University, in Taiwan. The group’s research activities focus on the design and analysis of efficient algorithms to solve important mathematical problems, as well as the development and implementation of these algorithms on massively parallel computers.

Prior to signing on with Amazon Web Services (AWS), the group used a private cloud and ran Hadoop on their own machines. Prof. Chen-Mou Cheng, the Principal Investigator of Fast Crypto Lab, explains why the research group made the switch to AWS: “It is quite easy to get started with AWS with its clear and flexible interface. Amazon Elastic Compute Cloud (Amazon EC2) provides a common measure of cost across problems of a different nature. For problems that are the same or similar, Amazon EC2 can also be used as a metric for comparing alternative or competing algorithms and their implementations.”

Chen-Mou adds, “When using Amazon EC2 as a metric, the parallelizability of the algorithm or the parallelization of the implementation is explicitly taken into account, as opposed to being assumed or unspecified. The Amazon EC2 metric is thus practical and easy to use.”

The group now uses Hadoop Streaming in their architecture, and runs their programs with Amazon Elastic MapReduce (Amazon EMR) and Cluster GPU Instances for Amazon EC2.

“Our purpose is to break the record of solving the shortest vector problem (SVP) in Euclidean lattices," Chen-Mou says. "The problem plays an important role in the field of information science. We estimated that we would need 1,000 cg1.4xlarge instance-hours. We ended up using 50 cg1.4xlarge instances for about 10 hours to solve our problem. Now, the vectors we found are considered the hardest SVP anyone has solved so far. We only spent $2,300 for using the 100 Tesla M2050 for 10 hours, which is quite a good deal.”

Since switching to AWS, the group indicates that the machine maintenance costs have been reduced, and they have experienced more stable and scalable computational power. The group’s favorite component of AWS is Amazon CloudWatch, which it uses to watch computer utilities while also improving their program.

Looking into the future, Chen-Mou says, “We want to increase our GPU Cluster quote and solve a higher dimension SVP. We are also considering renting an AWS machine for setting up an SVN server.”

To find out more about how AWS can help you store and process big data, visit our Big Data details page: http://aws.amazon.com/big-data/.