title-divider_aws-orange
sustainability_greener-in-the-cloud

Any analysis on the climate impact of a data center should consider resource utilization and energy efficiency, in addition to power mix. Carbon emissions are a factor of three things: the number of servers running, the total energy required to power each server, and the carbon intensity of energy sources used to power these servers. A recent blog post by Jeff Barr outlines why using fewer servers and powering them more efficiently is at least as important to reducing the carbon impact of a company’s data center as its power mix.

A typical large-scale cloud provider achieves approximately 65% server utilization rates versus 15% on-premises, which means when companies move to the cloud, they typically provision fewer than ¼ of the servers than they would on-premises.1 In addition, a typical on-premises data center is 29% less efficient in their use of power compared to a typical large-scale cloud provider that uses world-class facility designs, cooling systems, and workload-optimized equipment.2 Adding these together (fewer servers used plus more power efficient servers), customers only need 16% of the power as compared to on-premises infrastructure. This represents an 84% reduction in the amount of power required.

This massive improvement in energy efficiency drives a huge reduction in climate impact because less energy consumed means fewer carbon emissions. The climate impact improvements get even better when you factor in that the average corporate data center has a dirtier power mix than the typical large-scale cloud provider. Large-scale cloud providers (AWS included) use a power mix that is 28% less carbon intense than the global average.3

sustainability_servers-cloud

Combining the fraction of energy required with a less carbon-intense power mix, customers can end up with a reduction in carbon emissions of 88% by moving to the cloud and AWS.

Read more here.

sustainability_banner-trees

 

title-divider_aws-orange

We’ve made a lot of progress on this commitment. At the end of 2016, more than 40% of the power consumed by our global infrastructure came from renewable energy sources, and we set a goal to be powered by 50% renewable energy by the end of 2017.

Click on each logo to learn more about our renewable energy projects.

Amazon_SolarFarm_USEast_Color_Wide_Transparency

Amazon Solar Farm US East is an 80 megawatt solar farm in Accomack County, Virginia. The solar farm went into operation in October 2016 and is expected to generate approximately 170,000 megawatt hours of solar power annually – or enough to power approximately 15,000 US homes4 in a year. Click here to watch the video.

Amazon Solar Farm US East is an 80 megawatt solar farm in Accomack County, Virginia.

Amazon_SolarFarm_USEast_2_Color_Wide_Transparency

Amazon Solar Farm US East 2, Amazon Solar Farm US East 3, Amazon Solar Farm US East 4, and Amazon Solar Farm US East 5 are four individual facilities, each with a capacity of 20 megawatts, located in New Kent, Buckingham, Sussex, and Powhatan counties in Virginia.These solar farms are expected to start generating a total of more than 190,000 megawatt hours of solar power annually by the end of 2017 – or enough to power over 17,000 US homes4 in a year.

Amazon Solar Farm US East 2 is a 20 megawatt solar farm in Buckingham County, Virginia.

Amazon_SolarFarm_USEast_3_Color_Wide_Transparency

Amazon Solar Farm US East 2, Amazon Solar Farm US East 3, Amazon Solar Farm US East 4, and Amazon Solar Farm US East 5 are four individual facilities, each with a capacity of 20 megawatts, located in New Kent, Buckingham, Sussex, and Powhatan counties in Virginia.These solar farms are expected to start generating a total of more than 190,000 megawatt hours of solar power annually by the end of 2017 – or enough to power over 17,000 US homes4 in a year.

Amazon Solar Farm US East 3 is a 20 megawatt solar farm in New Kent County, Virginia.

Amazon_SolarFarm_USEast_4_Color_Wide_Transparency

Amazon Solar Farm US East 2, Amazon Solar Farm US East 3, Amazon Solar Farm US East 4, and Amazon Solar Farm US East 5 are four individual facilities, each with a capacity of 20 megawatts, located in New Kent, Buckingham, Sussex, and Powhatan counties in Virginia.These solar farms are expected to start generating a total of more than 190,000 megawatt hours of solar power annually by the end of 2017 – or enough to power over 17,000 US homes4 in a year.

Amazon Solar Farm US East 4 is a 20 megawatt solar farm in Sussex County, Virginia.

Amazon_SolarFarm_USEast_5_Color_Wide_Transparency

Amazon Solar Farm US East 2, Amazon Solar Farm US East 3, Amazon Solar Farm US East 4, and Amazon Solar Farm US East 5 are four individual facilities, each with a capacity of 20 megawatts, located in New Kent, Buckingham, Sussex, and Powhatan counties in Virginia.These solar farms are expected to start generating a total of more than 190,000 megawatt hours of solar power annually by the end of 2017 – or enough to power over 17,000 US homes4 in a year.

Amazon Solar Farm US East 5 is a 20 megawatt solar farm in Powhatan County, Virginia.

Amazon_SolarFarm_USEast_6_Color_Wide_Transparency

Amazon Solar Farm US East 6 is a 100 megawatt facility in Southampton County, Virginia. The solar farm is expected to start generating approximately 210,000 megawatt hours of solar power annually by the end of 2017 – or enough to power over 19,000 US homes4 in a year.

Amazon Solar Farm US East 6 is a 100 megawatt facility in Southampton County, Virginia.

Amazon_Windfarm_FowlerRidge_Color_Wide

Amazon Wind Farm Fowler Ridge is a 150 megawatt wind farm in Benton County, Indiana. The wind farm went into operation in January 2016 and is expected to generate approximately 500,000 megawatt hours of wind power annually – or enough to power approximately 46,000 US homes in a year4. Click here to watch the video.

Amazon Wind Farm Fowler Ridge is a 150 megawatt wind farm in Benton County, Indiana.

Amazon_WindFarm_USEast_Color_Wide

Amazon Wind Farm US East is a 208 megawatt wind farm in Perquimans and Pasquotank counties, North Carolina. The wind farm went into operation in December 2016 and is expected to generate approximately 670,000 megawatt hours of wind energy annually - or enough to power more than 61,000 US homes4 in a year. Amazon Wind Farm US East is the first utility-scale wind farm in the state of North Carolina.

Amazon Wind Farm US East is a 208 megawatt wind farm in Perquimans and Pasquotank counties, North Carolina.

Amazon_WindFarm_USCentral_Color_Wide

Amazon Wind Farm US Central is a 100 megawatt wind farm in Paulding County, Ohio. The wind farm went into operation in December 2016 and is expected to generate approximately 320,000 megawatt hours of wind energy annually - or enough to power more than 29,000 US homes in a year4. Click here to watch the video.

Amazon Wind Farm US Central is a 100 megawatt wind farm in Paulding County, Ohio.

Amazon_WindFarm_USCentral_2_Color_Wide

Amazon Wind Farm US Central 2 is a 189 megawatt wind farm in Hardin County, Ohio. The wind farm is expected to generate over 580,000 megawatt hours of wind energy annually - or enough to power approximately 53,000 US homes4 each year.

Amazon Wind Farm US Central 2 is a 189 megawatt wind farm in Hardin County, Ohio.

These ten renewable energy projects will deliver a total of 2.6 million MWh of energy annually onto the electric grid powering AWS data centers located in the AWS US East (Ohio) and AWS US East (N. Virginia) Regions. The electricity produced from these projects is enough to power the equivalent of over 240,000 U.S. homes annually, which is approximately the size of the city of Portland, Oregon.5

 

In addition to AWS’ renewable energy progress, Amazon.com has also announced several renewable projects – please visit the Amazon Sustainability site for more details.

title-divider_aws-orange

AWS announced five new solar farms across the Commonwealth of Virginia - these solar farms join the company’s existing project, Amazon Solar Farm US East, which went into production in October 2016. Amazon worked with developers Virginia Solar LLC and Community Energy Solar on the projects, and will further collaborate with an affiliate of Dominion Resources, Inc. to own and operate the solar farms. Read the press release here.

title-divider_aws-orange

AWS announced that it has engaged with EverPower to construct, own, and operate Amazon Wind Farm US Central 2. Read the press release here.

title-divider_aws-orange

AWS and Dominion Virginia Power join forces on a landmark renewable energy delivery deal. With this, Dominion Virginia Power will manage and integrate the energy produced from various Amazon wind and solar farm projects onto the grid that serves AWS datacenters. Read the Rocky Mountain Institute blog here for more details.

VIEW TIMELINE

 

title-divider_aws-orange
  • Amazon Wind Farm US Central

    USCentralWindFarm_sized
  • Amazon Wind Farm Fowler Ridge

    Windfarm_02
  • Amazon Solar Farms US East

    Amazon_Solar_Farm_03
DJI_0078
Fowler-Ridge_11
Fowler-Ridge_6
sustainability_banner-trees
title-divider_aws-orange

AWS opened its first carbon-neutral region in 2011 and now offers five separate carbon-neutral regions for customers to utilize.

1 Source: NRDC 2014 “Data Center Efficiency Assessment” report

2 Source: Power Usage Effectiveness (PUE) of on-premises data centers from 2014 Uptime Institute study and PUE of cloud data centers from Google and Facebook public disclosures plus AWS internal data, all of which show PUEs under 1.2

3 Source: AWS average power mix carbon intensity of 393 grams/kWh for June 2015 and 2014 Global Energy Mix data from the International Energy Agency for on-premises assumptions

4 In 2015, the average annual electricity consumption for a U.S. residential utility customer was 10,812 kilowatt hours (kWh), an average of 901 kWh per month

5 Source: Dividing the population of Portland, Oregon (632,309 in 2015) by the average number of persons per household between 2010-2014 (2.63 according to the US Census), you get 240,421 homes.