Artificial Intelligence

Namita Das

Author: Namita Das

Understand drivers that influence your forecasts with explainability impact scores in Amazon Forecast

We’re excited to launch explainability impact scores in Amazon Forecast, which help you understand the factors that impact your forecasts for specific items and time durations of interest. Forecast is a managed service for developers that uses machine learning (ML) to generate more accurate demand forecasts, without requiring any ML experience. To increase forecast model […]

New Amazon Forecast API that creates up to 40% more accurate forecasts and provides explainability

We’re excited to announce a new forecasting API for Amazon Forecast that generates up to 40% more accurate forecasts and helps you understand which factors, such as price, holidays, weather, or item category, are most influencing your forecasts. Forecast uses machine learning (ML) to generate more accurate demand forecasts, without requiring any ML experience. Forecast […]

Introducing a new API to stop in-progress workflows in Amazon Forecast

Amazon Forecast uses machine learning (ML) to generate more accurate demand forecasts, without requiring any prior ML experience. Forecast brings the same technology used at Amazon.com to developers as a fully managed service, removing the need to manage resources or rebuild your systems. To start generating forecasts through Forecast, you can follow three steps of […]

Most items in the model with the Weather Index have errors below 0.05.

Amazon Forecast Weather Index – automatically include local weather to increase your forecasting model accuracy

We’re excited to announce the Amazon Forecast Weather Index, which can increase your forecasting accuracy by automatically including local weather information in your demand forecasts with one click and at no extra cost. Weather conditions influence consumer demand patterns, product merchandizing decisions, staffing requirements, and energy consumption needs. However, acquiring, cleaning, and effectively using live […]

Amazon Forecast now supports accuracy measurements for individual items

We’re excited to announce that you can now measure the accuracy of forecasts for individual items in Amazon Forecast, allowing you to better understand your forecasting model’s performance for the items that most impact your business. Improving forecast accuracy for specific items—such as those with higher prices or higher costs—is often more important than optimizing […]

Measuring forecast model accuracy to optimize your business objectives with Amazon Forecast

September 2021: This blog has been updated to include three recently launched accuracy metrics in Amazon Forecast and the ability to select an accuracy metric to optimize AutoML. We’re excited to announce that you can now measure the accuracy of your forecasting model to optimize the trade-offs between under-forecasting and over-forecasting costs, giving you flexibility in […]

Amazon Forecast can now use Convolutional Neural Networks (CNNs) to train forecasting models up to 2X faster with up to 30% higher accuracy

We’re excited to announce that Amazon Forecast can now use Convolutional Neural Networks (CNNs) to train forecasting models up to 2X faster with up to 30% higher accuracy. CNN algorithms are a class of neural network-based machine learning (ML) algorithms that play a vital role in Amazon.com’s demand forecasting system and enable Amazon.com to predict […]