Artificial Intelligence
Improve governance of your machine learning models with Amazon SageMaker
As companies are increasingly adopting machine learning (ML) for their mainstream enterprise applications, more of their business decisions are influenced by ML models. As a result of this, having simplified access control and enhanced transparency across all your ML models makes it easier to validate that your models are performing well and take action when […]
Reduce the time taken to deploy your models to Amazon SageMaker for testing
Data scientists often train their models locally and look for a proper hosting service to deploy their models. Unfortunately, there’s no one set mechanism or guide to deploying pre-trained models to the cloud. In this post, we look at deploying trained models to Amazon SageMaker hosting to reduce your deployment time. SageMaker is a fully […]
Build Custom SageMaker Project Templates – Best Practices
July 2023: This post was reviewed for accuracy. SageMaker Projects give organizations the ability to easily setup and standardize developer environments for data scientists and CI/CD systems for MLOps Engineers. With SageMaker Projects, MLOps engineers or organization admins can define templates which bootstrap the ML Workflow with source version control, automated ML Pipelines, and a […]
Create Amazon SageMaker projects with image building CI/CD pipelines
Amazon SageMaker projects are AWS Service Catalog provisioned products that enable you to easily create end-to-end machine learning (ML) solutions. SageMaker projects give organizations the ability to use templates that bootstrap ML solutions for your users to speed up the start time for ML development. You can now use SageMaker projects to manage custom dependencies […]



