Artificial Intelligence

Phi Nguyen

Author: Phi Nguyen

Phi Nguyen is a solutions architect at AWS helping customers with their cloud journey with a special focus on data lake, analytics, semantics technologies and machine learning. In his spare time, you can find him biking to work, coaching his son’s soccer team or enjoying nature walk with his family.

Optimize your inference jobs using dynamic batch inference with TorchServe on Amazon SageMaker

In deep learning, batch processing refers to feeding multiple inputs into a model. Although it’s essential during training, it can be very helpful to manage the cost and optimize throughput during inference time as well. Hardware accelerators are optimized for parallelism, and batching helps saturate the compute capacity and often leads to higher throughput. Batching […]

The same survey highlights that the top three biggest roadblocks to deploying a model in production are managing dependencies and environments, security, and skill gaps.

Exploratory data analysis, feature engineering, and operationalizing your data flow into your ML pipeline with Amazon SageMaker Data Wrangler

According to The State of Data Science 2020 survey, data management, exploratory data analysis (EDA), feature selection, and feature engineering accounts for more than 66% of a data scientist’s time (see the following diagram). The same survey highlights that the top three biggest roadblocks to deploying a model in production are managing dependencies and environments, […]

Training knowledge graph embeddings at scale with the Deep Graph Library

We’re extremely excited to share the Deep Graph Knowledge Embedding Library (DGL-KE), a knowledge graph (KG) embeddings library built on top of the Deep Graph Library (DGL). DGL is an easy-to-use, high-performance, scalable Python library for deep learning on graphs. You can now create embeddings for large KGs containing billions of nodes and edges two-to-five […]

Build a custom entity recognizer using Amazon Comprehend

Amazon Comprehend is a natural language processing service that can extract key phrases, places, names, organizations, events, and even sentiment from unstructured text, and more. Customers usually want to add their own entity types unique to their business, like proprietary part codes or industry-specific terms. In November 2018, enhancements to Amazon Comprehend added the ability to […]