Artificial Intelligence
A guide to building AI agents in GxP environments
The regulatory landscape for GxP compliance is evolving to address the unique characteristics of AI. Traditional Computer System Validation (CSV) approaches, often with uniform validation strategies, are being supplemented by Computer Software Assurance (CSA) frameworks that emphasize flexible risk-based validation methods tailored to each system’s actual impact and complexity (FDA latest guidance). In this post, we cover a risk-based implementation, practical implementation considerations across different risk levels, the AWS shared responsibility model for compliance, and concrete examples of risk mitigation strategies.
Accelerate digital pathology slide annotation workflows on AWS using H-optimus-0
In this post, we demonstrate how to use H-optimus-0 for two common digital pathology tasks: patch-level analysis for detailed tissue examination, and slide-level analysis for broader diagnostic assessment. Through practical examples, we show you how to adapt this FM to these specific use cases while optimizing computational resources.
Move Amazon SageMaker Autopilot ML models from experimentation to production using Amazon SageMaker Pipelines
Amazon SageMaker Autopilot automatically builds, trains, and tunes the best custom machine learning (ML) models based on your data. It’s an automated machine learning (AutoML) solution that eliminates the heavy lifting of handwritten ML models that requires ML expertise. Data scientists need to only provide a tabular dataset and select the target column to predict, […]


