Artificial Intelligence
Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 2
This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at a single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a […]
Build BI dashboards for your Amazon SageMaker Ground Truth labels and worker metadata
This is the second in a two-part series on the Amazon SageMaker Ground Truth hierarchical labeling workflow and dashboards. In Part 1: Automate multi-modality, parallel data labeling workflows with Amazon SageMaker Ground Truth and AWS Step Functions, we looked at how to create multi-step labeling workflows for hierarchical label taxonomies using AWS Step Functions. In […]
Automate multi-modality, parallel data labeling workflows with Amazon SageMaker Ground Truth and AWS Step Functions
This is the first in a two-part series on the Amazon SageMaker Ground Truth hierarchical labeling workflow and dashboards. In Part 1, we look at creating multi-step labeling workflows for hierarchical label taxonomies using AWS Step Functions. In Part 2 (coming soon), we look at how to build dashboards for analyzing dataset annotations and worker […]
Annotate dense point cloud data using Amazon SageMaker Ground Truth
Autonomous vehicle companies typically use LiDAR sensors to generate a 3D understanding of the environment around their vehicles. For example, they mount a LiDAR sensor on their vehicles to continuously capture point-in-time snapshots of the surrounding 3D environment. The LiDAR sensor output is a sequence of 3D point cloud frames (the typical capture rate is […]
Quality Assessment for SageMaker Ground Truth Video Object Tracking Annotations using Statistical Analysis
Data quality is an important topic for virtually all teams and systems deriving insights from data, especially teams and systems using machine learning (ML) models. Supervised ML is the task of learning a function that maps an input to an output based on examples of input-output pairs. For a supervised ML algorithm to effectively learn […]




