Artificial Intelligence

Yanyan Zhang

Author: Yanyan Zhang

Iterative fine-tuning on Amazon Bedrock for strategic model improvement

Organizations often face challenges when implementing single-shot fine-tuning approaches for their generative AI models. The single-shot fine-tuning method involves selecting training data, configuring hyperparameters, and hoping the results meet expectations without the ability to make incremental adjustments. Single-shot fine-tuning frequently leads to suboptimal results and requires starting the entire process from scratch when improvements are […]

Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock

In this post, we walk through the custom model on-demand deployment workflow for Amazon Bedrock and provide step-by-step implementation guides using both the AWS Management Console and APIs or AWS SDKs. We also discuss best practices and considerations for deploying customized Amazon Nova models on Amazon Bedrock.

Workflow for Amazon Bedrock Copy and Model Share.

Bridging the gap between development and production: Seamless model lifecycle management with Amazon Bedrock

Amazon Bedrock Model Copy and Model Share features provide a powerful option for managing the lifecycle of an AI application from development to production. In this comprehensive blog post, we’ll dive deep into the Model Share and Model Copy features, exploring their functionalities, benefits, and practical applications in a typical development-to-production scenario.

Best practices for Meta Llama 3.2 multimodal fine-tuning on Amazon Bedrock

In this post, we share comprehensive best practices and scientific insights for fine-tuning Meta Llama 3.2 multimodal models on Amazon Bedrock. By following these guidelines, you can fine-tune smaller, more cost-effective models to achieve performance that rivals or even surpasses much larger models—potentially reducing both inference costs and latency, while maintaining high accuracy for your specific use case.

Amazon Bedrock Model Distillation: Boost function calling accuracy while reducing cost and latency

In this post, we highlight the advanced data augmentation techniques and performance improvements in Amazon Bedrock Model Distillation with Meta’s Llama model family. This technique transfers knowledge from larger, more capable foundation models (FMs) that act as teachers to smaller, more efficient models (students), creating specialized models that excel at specific tasks.

Exploring creative possibilities: A visual guide to Amazon Nova Canvas

In this blog post, we showcase a curated gallery of visuals generated by Nova Canvas—categorized by real-world use cases—from marketing and product visualization to concept art and design exploration. Each image is paired with the prompt and parameters that generated it, providing a practical starting point for your own AI-driven creativity. Whether you’re crafting specific types of images, optimizing workflows, or simply seeking inspiration, this guide will help you unlock the full potential of Amazon Nova Canvas.

Image and video prompt engineering for Amazon Nova Canvas and Amazon Nova Reel

Amazon has introduced two new creative content generation models on Amazon Bedrock: Amazon Nova Canvas for image generation and Amazon Nova Reel for video creation. These models transform text and image inputs into custom visuals, opening up creative opportunities for both professional and personal projects. Nova Canvas, a state-of-the-art image generation model, creates professional-grade images […]

A guide to Amazon Bedrock Model Distillation (preview)

This post introduces the workflow of Amazon Bedrock Model Distillation. We first introduce the general concept of model distillation in Amazon Bedrock, and then focus on the important steps in model distillation, including setting up permissions, selecting the models, providing input dataset, commencing the model distillation jobs, and conducting evaluation and deployment of the student models after model distillation.

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

Best practices and lessons for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock

In this post, we explore the best practices and lessons learned for fine-tuning Anthropic’s Claude 3 Haiku on Amazon Bedrock. We discuss the important components of fine-tuning, including use case definition, data preparation, model customization, and performance evaluation.

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

Although batch inference offers numerous benefits, it’s limited to 10 batch inference jobs submitted per model per Region. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. This post guides you through implementing a queue management system that automatically monitors available job slots and submits new jobs as slots become available.