Artificial Intelligence
Category: *Post Types
How to schedule jobs and parameterize your datasets in Amazon SageMaker Data Wrangler
Data is transforming every field and every business. However, with data growing faster than most companies can keep track of, collecting data and getting value out of that data is a challenging thing to do. A modern data strategy can help you create better business outcomes with data. AWS provides the most complete set of […]
Run machine learning inference workloads on AWS Graviton-based instances with Amazon SageMaker
Today, we are launching Amazon SageMaker inference on AWS Graviton to enable you to take advantage of the price, performance, and efficiency benefits that come from Graviton chips. Graviton-based instances are available for model inference in SageMaker. This post helps you migrate and deploy a machine learning (ML) inference workload from x86 to Graviton-based instances […]
How Prodege saved $1.5 million in annual human review costs using low-code computer vision AI
This post was co-authored by Arun Gupta, the Director of Business Intelligence at Prodege, LLC. Prodege is a data-driven marketing and consumer insights platform comprised of consumer brands—Swagbucks, MyPoints, Tada, ySense, InboxDollars, InboxPounds, DailyRewards, PollFish, and Upromise—along with a complementary suite of business solutions for marketers and researchers. Prodege has 120 million users and has […]
Cost-effective data preparation for machine learning using SageMaker Data Wrangler
Amazon SageMaker Data Wrangler is a capability of Amazon SageMaker that makes it faster for data scientists and engineers to prepare high-quality features for machine learning (ML) applications via a visual interface. Data Wrangler reduces the time it takes to aggregate and prepare data for ML from weeks to minutes. With Data Wrangler, you can […]
Improving stability and flexibility of ML pipelines at Amazon Packaging Innovation with Amazon SageMaker Pipelines
To delight customers and minimize packaging waste, Amazon must select the optimal packaging type for billions of packages shipped every year. If too little protection is used for a fragile item such as a coffee mug, the item will arrive damaged and Amazon risks their customer’s trust. Using too much protection will result in increased […]
Automated exploratory data analysis and model operationalization framework with a human in the loop
Identifying, collecting, and transforming data is the foundation for machine learning (ML). According to a Forbes survey, there is widespread consensus among ML practitioners that data preparation accounts for approximately 80% of the time spent in developing a viable ML model. In addition, many of our customers face several challenges during the model operationalization phase […]
Reduce food waste to improve sustainability and financial results in retail with Amazon Forecast
With environmental, social, and governance (ESG) initiatives becoming more important for companies, our customer, one of Greater China region’s top convenience store chains, has been seeking a solution to reduce food waste (currently over $3.5 million USD per year). Doing so will allow them to not only realize substantial operating savings, but also support corporate […]
Deploy a machine learning inference data capture solution on AWS Lambda
Monitoring machine learning (ML) predictions can help improve the quality of deployed models. Capturing the data from inferences made in production can enable you to monitor your deployed models and detect deviations in model quality. Early and proactive detection of these deviations enables you to take corrective actions, such as retraining models, auditing upstream systems, […]
Create synthetic data for computer vision pipelines on AWS
Collecting and annotating image data is one of the most resource-intensive tasks on any computer vision project. It can take months at a time to fully collect, analyze, and experiment with image streams at the level you need in order to compete in the current marketplace. Even after you’ve successfully collected data, you still have […]
Enable CI/CD of multi-Region Amazon SageMaker endpoints
Amazon SageMaker and SageMaker inference endpoints provide a capability of training and deploying your AI and machine learning (ML) workloads. With inference endpoints, you can deploy your models for real-time or batch inference. The endpoints support various types of ML models hosted using AWS Deep Learning Containers or your own containers with custom AI/ML algorithms. […]









