Artificial Intelligence

Category: *Post Types

Deploy DeepSeek-R1 distilled Llama models with Amazon Bedrock Custom Model Import

In this post, we demonstrate how to deploy distilled versions of DeepSeek-R1 models using Amazon Bedrock Custom Model Import. We focus on importing the variants currently supported DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Llama-70B, which offer an optimal balance between performance and resource efficiency.

Generative AI operating models in enterprise organizations with Amazon Bedrock

As generative AI adoption grows, organizations should establish a generative AI operating model. An operating model defines the organizational design, core processes, technologies, roles and responsibilities, governance structures, and financial models that drive a business’s operations. In this post, we evaluate different generative AI operating model architectures that could be adopted.

ML-16454_solution_architecture.jpg

Develop a RAG-based application using Amazon Aurora with Amazon Kendra

RAG retrieves data from a preexisting knowledge base (your data), combines it with the LLM’s knowledge, and generates responses with more human-like language. However, in order for generative AI to understand your data, some amount of data preparation is required, which involves a big learning curve. In this post, we walk you through how to convert your existing Aurora data into an index without needing data preparation for Amazon Kendra to perform data search and implement RAG that combines your data along with LLM knowledge to produce accurate responses.

Create a SageMaker inference endpoint with custom model & extended container

This post walks you through the end-to-end process of deploying a single custom model on SageMaker using NASA’s Prithvi model. The Prithvi model is a first-of-its-kind temporal Vision transformer pre-trained by the IBM and NASA team on contiguous US Harmonised Landsat Sentinel 2 (HLS) data. It can be finetuned for image segmentation using the mmsegmentation library for use cases like burn scars detection, flood mapping, and multi-temporal crop classification.

Security best practices to consider while fine-tuning models in Amazon Bedrock

In this post, we implemented secure fine-tuning jobs in Amazon Bedrock, which is crucial for protecting sensitive data and maintaining the integrity of your AI models. By following the best practices outlined in this post, including proper IAM role configuration, encryption at rest and in transit, and network isolation, you can significantly enhance the security posture of your fine-tuning processes.

Streamline custom environment provisioning for Amazon SageMaker Studio: An automated CI/CD pipeline approach

In this post, we show how to create an automated continuous integration and delivery (CI/CD) pipeline solution to build, scan, and deploy custom Docker images to SageMaker Studio domains. You can use this solution to promote consistency of the analytical environments for data science teams across your enterprise.

architecture diagram

Enhance your customer’s omnichannel experience with Amazon Bedrock and Amazon Lex

In this post, we show you how to set up Amazon Lex for an omnichannel chatbot experience and Amazon Bedrock to be your secondary validation layer. This allows your customers to potentially provide out-of-band responses both at the intent and slot collection levels without having to be re-prompted, allowing for a seamless customer experience.

Video security analysis for privileged access management using generative AI and Amazon Bedrock

In this post, we show you an innovative solution to a challenge faced by security teams in highly regulated industries: the efficient security analysis of vast amounts of video recordings from Privileged Access Management (PAM) systems. We demonstrate how you can use Anthropic’s Claude 3 family of models and Amazon Bedrock to perform the complex task of analyzing video recordings of server console sessions and perform queries to highlight any potential security anomalies.

How Cato Networks uses Amazon Bedrock to transform free text search into structured GraphQL queries

Accurately converting free text inputs into structured data is crucial for applications that involve data management and user interaction. In this post, we introduce a real business use case from Cato Networks that significantly improved user experience. By using Amazon Bedrock, we gained access to state-of-the-art generative language models with built-in support for JSON schemas and structured data.