Artificial Intelligence
Category: *Post Types
Real value, real time: Production AI with Amazon SageMaker and Tecton
In this post, we discuss how Amazon SageMaker and Tecton work together to simplify the development and deployment of production-ready AI applications, particularly for real-time use cases like fraud detection. The integration enables faster time to value by abstracting away complex engineering tasks, allowing teams to focus on building features and use cases while providing a streamlined framework for both offline training and online serving of ML models.
Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models
In this post, we explore how to deploy AI models from SageMaker JumpStart and use them with Amazon Bedrock’s powerful features. Users can combine SageMaker JumpStart’s model hosting with Bedrock’s security and monitoring tools. We demonstrate this using the Gemma 2 9B Instruct model as an example, showing how to deploy it and use Bedrock’s advanced capabilities.
Building Generative AI and ML solutions faster with AI apps from AWS partners using Amazon SageMaker
Today, we’re excited to announce that AI apps from AWS Partners are now available in SageMaker. You can now find, deploy, and use these AI apps privately and securely, all without leaving SageMaker AI, so you can develop performant AI models faster.
Amazon SageMaker launches the updated inference optimization toolkit for generative AI
Today, Amazon SageMaker is excited to announce updates to the inference optimization toolkit, providing new functionality and enhancements to help you optimize generative AI models even faster.In this post, we discuss these new features of the toolkit in more detail.
Syngenta develops a generative AI assistant to support sales representatives using Amazon Bedrock Agents
In this post, we explore how Syngenta collaborated with AWS to develop Cropwise AI, a generative AI assistant powered by Amazon Bedrock Agents that helps sales representatives make better seed product recommendations to farmers across North America. The solution transforms the seed selection process by simplifying complex data into natural conversations, providing quick access to detailed seed product information, and enabling personalized recommendations at scale through a mobile app interface.
Speed up your AI inference workloads with new NVIDIA-powered capabilities in Amazon SageMaker
At re:Invent 2024, we are excited to announce new capabilities to speed up your AI inference workloads with NVIDIA accelerated computing and software offerings on Amazon SageMaker. In this post, we will explore how you can use these new capabilities to enhance your AI inference on Amazon SageMaker. We’ll walk through the process of deploying NVIDIA NIM microservices from AWS Marketplace for SageMaker Inference. We’ll then dive into NVIDIA’s model offerings on SageMaker JumpStart, showcasing how to access and deploy the Nemotron-4 model directly in the JumpStart interface. This will include step-by-step instructions on how to find the Nemotron-4 model in the JumpStart catalog, select it for your use case, and deploy it with a few clicks.
Supercharge your auto scaling for generative AI inference – Introducing Container Caching in SageMaker Inference
Today at AWS re:Invent 2024, we are excited to announce the new Container Caching capability in Amazon SageMaker, which significantly reduces the time required to scale generative AI models for inference. This innovation allows you to scale your models faster, observing up to 56% reduction in latency when scaling a new model copy and up to 30% when adding a model copy on a new instance. In this post, we explore the new Container Caching feature for SageMaker inference, addressing the challenges of deploying and scaling large language models (LLMs).
Introducing Fast Model Loader in SageMaker Inference: Accelerate autoscaling for your Large Language Models (LLMs) – part 1
Today at AWS re:Invent 2024, we are excited to announce a new capability in Amazon SageMaker Inference that significantly reduces the time required to deploy and scale LLMs for inference using LMI: Fast Model Loader. In this post, we delve into the technical details of Fast Model Loader, explore its integration with existing SageMaker workflows, discuss how you can get started with this powerful new feature, and share customer success stories.
Fast and accurate zero-shot forecasting with Chronos-Bolt and AutoGluon
Chronos models are available for Amazon SageMaker customers through AutoGluon-TimeSeries and Amazon SageMaker JumpStart. In this post, we introduce Chronos-Bolt, our latest FM for forecasting that has been integrated into AutoGluon-TimeSeries.
How Amazon Finance Automation built a generative AI Q&A chat assistant using Amazon Bedrock
Amazon Finance Automation developed a large language model (LLM)-based question-answer chat assistant on Amazon Bedrock. This solution empowers analysts to rapidly retrieve answers to customer queries, generating prompt responses within the same communication thread. As a result, it drastically reduces the time required to address customer queries. In this post, we share how Amazon Finance Automation built this generative AI Q&A chat assistant using Amazon Bedrock.









