Artificial Intelligence

Category: *Post Types

Zero-shot and few-shot prompting for the BloomZ 176B foundation model with the simplified Amazon SageMaker JumpStart SDK

Amazon SageMaker JumpStart is a machine learning (ML) hub offering algorithms, models, and ML solutions. With SageMaker JumpStart, ML practitioners can choose from a growing list of best performing and publicly available foundation models (FMs) such as BLOOM, Llama 2, Falcon-40B, Stable Diffusion, OpenLLaMA, Flan-T5/UL2, or FMs from Cohere and LightOn. In this post and […]

Amazon SageMaker JumpStart landing page

Zero-shot text classification with Amazon SageMaker JumpStart

Natural language processing (NLP) is the field in machine learning (ML) concerned with giving computers the ability to understand text and spoken words in the same way as human beings can. Recently, state-of-the-art architectures like the transformer architecture are used to achieve near-human performance on NLP downstream tasks like text summarization, text classification, entity recognition, […]

Build a centralized monitoring and reporting solution for Amazon SageMaker using Amazon CloudWatch

In this post, we present a cross-account observability dashboard that provides a centralized view for monitoring SageMaker user activities and resources across multiple accounts. It allows the end-users and cloud management team to efficiently monitor what ML workloads are running, view the status of these workloads, and trace back different account activities at certain points of time.

Generate creative advertising using generative AI deployed on Amazon SageMaker

Creative advertising has the potential to be revolutionized by generative AI (GenAI). You can now create a wide variation of novel images, such as product shots, by retraining a GenAI model and providing a few inputs into the model, such as textual prompts (sentences describing the scene and objects to be produced by the model). […]

Host the Spark UI on Amazon SageMaker Studio

Amazon SageMaker offers several ways to run distributed data processing jobs with Apache Spark, a popular distributed computing framework for big data processing. You can run Spark applications interactively from Amazon SageMaker Studio by connecting SageMaker Studio notebooks and AWS Glue Interactive Sessions to run Spark jobs with a serverless cluster. With interactive sessions, you […]

AWS performs fine-tuning on a Large Language Model (LLM) to classify toxic speech for a large gaming company

The video gaming industry has an estimated user base of over 3 billion worldwide1. It consists of massive amounts of players virtually interacting with each other every single day. Unfortunately, as in the real world, not all players communicate appropriately and respectfully. In an effort to create and maintain a socially responsible gaming environment, AWS […]

Optimize data preparation with new features in Amazon SageMaker Data Wrangler

Data preparation is a critical step in any data-driven project, and having the right tools can greatly enhance operational efficiency. Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare tabular and image data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of […]

Index your Alfresco content using the new Amazon Kendra Alfresco connector

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should […]

Intelligent Document Processing Pipeline with Generative AI

Enhancing AWS intelligent document processing with generative AI

Data classification, extraction, and analysis can be challenging for organizations that deal with volumes of documents. Traditional document processing solutions are manual, expensive, error prone, and difficult to scale. AWS intelligent document processing (IDP), with AI services such as Amazon Textract, allows you to take advantage of industry-leading machine learning (ML) technology to quickly and […]

architecture that displays the described process

Scale training and inference of thousands of ML models with Amazon SageMaker

Training and serving thousands of models requires a robust and scalable infrastructure, which is where Amazon SageMaker can help. SageMaker is a fully managed platform that enables developers and data scientists to build, train, and deploy ML models quickly, while also offering the cost-saving benefits of using the AWS Cloud infrastructure. In this post, we explore how you can use SageMaker features, including Amazon SageMaker Processing, SageMaker training jobs, and SageMaker multi-model endpoints (MMEs), to train and serve thousands of models in a cost-effective way. To get started with the described solution, you can refer to the accompanying notebook on GitHub.