Artificial Intelligence

Category: Technical How-to

Hosting YOLOv8 PyTorch models on Amazon SageMaker Endpoints

Deploying models at scale can be a cumbersome task for many data scientists and machine learning engineers. However, Amazon SageMaker endpoints provide a simple solution for deploying and scaling your machine learning (ML) model inferences. Our last blog post and GitHub repo on hosting a YOLOv5 TensorFlowModel on Amazon SageMaker Endpoints sparked a lot of interest […]

Virtual fashion styling with generative AI using Amazon SageMaker 

The fashion industry is a highly lucrative business, with an estimated value of $2.1 trillion by 2025, as reported by the World Bank. This field encompasses a diverse range of segments, such as the creation, manufacture, distribution, and sales of clothing, shoes, and accessories. The industry is in a constant state of change, with new […]

Tune ML models for additional objectives like fairness with SageMaker Automatic Model Tuning

Model tuning is the experimental process of finding the optimal parameters and configurations for a machine learning (ML) model that result in the best possible desired outcome with a validation dataset. Single objective optimization with a performance metric is the most common approach for tuning ML models. However, in addition to predictive performance, there may […]

Achieve high performance at scale for model serving using Amazon SageMaker multi-model endpoints with GPU

Amazon SageMaker multi-model endpoints (MMEs) provide a scalable and cost-effective way to deploy a large number of machine learning (ML) models. It gives you the ability to deploy multiple ML models in a single serving container behind a single endpoint. From there, SageMaker manages loading and unloading the models and scaling resources on your behalf […]

Implementing MLOps practices with Amazon SageMaker JumpStart pre-trained models

Amazon SageMaker JumpStart is the machine learning (ML) hub of SageMaker that offers over 350 built-in algorithms, pre-trained models, and pre-built solution templates to help you get started with ML fast. JumpStart provides one-click access to a wide variety of pre-trained models for common ML tasks such as object detection, text classification, summarization, text generation […]

Building AI chatbots using Amazon Lex and Amazon Kendra for filtering query results based on user context

Amazon Kendra is an intelligent search service powered by machine learning (ML). It indexes the documents stored in a wide range of repositories and finds the most relevant document based on the keywords or natural language questions the user has searched for. In some scenarios, you need the search results to be filtered based on […]

Monitoring Lake Mead drought using the new Amazon SageMaker geospatial capabilities

Earth’s changing climate poses an increased risk of drought due to global warming. Since 1880, the global temperature has increased 1.01 °C. Since 1993, sea levels have risen 102.5 millimeters. Since 2002, the land ice sheets in Antarctica have been losing mass at a rate of 151.0 billion metric tons per year. In 2022, the […]

Optimize your machine learning deployments with auto scaling on Amazon SageMaker

Machine learning (ML) has become ubiquitous. Our customers are employing ML in every aspect of their business, including the products and services they build, and for drawing insights about their customers. To build an ML-based application, you have to first build the ML model that serves your business requirement. Building ML models involves preparing the […]

Analyze and visualize multi-camera events using Amazon SageMaker Studio Lab

The National Football League (NFL) is one of the most popular sports leagues in the United States and is the most valuable sports league in the world. The NFL, BioCore, and AWS are committed to advancing human understanding around the diagnosis, prevention, and treatment of sports-related injuries to make the game of football safer. More […]

Explain text classification model predictions using Amazon SageMaker Clarify

Model explainability refers to the process of relating the prediction of a machine learning (ML) model to the input feature values of an instance in humanly understandable terms. This field is often referred to as explainable artificial intelligence (XAI). Amazon SageMaker Clarify is a feature of Amazon SageMaker that enables data scientists and ML engineers […]