
Archived
Power Machine Learning

at Scale
Mapping Parallelized Modeling-to-HPC Infrastructure on AWS

May 2019

This paper has been archived

For the latest technical content, see the AWS
Whitepapers & Guides page:

https://aws.amazon.com/whitepapers

https://aws.amazon.com/whitepapers

Archived

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

Contents

Introduction .. 1

Data Management ... 2

Distributed Computation Frameworks .. 6

Build Compute Clusters to Fit the Workload ... 9

Modeling Using Hybrid Infrastructures .. 12

Conclusion ... 13

Contributors ... 14

Further Reading ... 14

Document Revisions.. 14

Appendix .. 15

Archived

Abstract

This white paper presents best practices for executing machine learning (ML) workflows

at scale on AWS. It provides an overview of end-to-end considerations, challenges, and

recommended solutions for architecting an infrastructure appropriate for ML use cases.

The intended audience for this white paper includes IT groups, enterprise architects,

data scientists, and others interested in understanding the technical recommendations

for executing parallelized modeling at scale using High Performance Computing (HPC)

infrastructure on AWS.

Are you Well-Architected?
The AWS Well-Architected Framework helps you understand the pros and cons of the
decisions you make when building systems on AWS. Using the Framework allows you
to learn architectural best practices for designing and operating reliable, secure,
efficient, and cost-effective systems in the cloud.

In the Machine Learning Lens, we focus on how to design, deploy, and architect your
machine learning workloads in the AWS Cloud. This lens adds to the best practices
described in the Well-Architected Framework.

https://aws.amazon.com/architecture/well-architected/?actwpp_AWSPMLWAF_PDF
https://aws.amazon.com/architecture/machine-learning/?actwpp_AWSPMLML_PDF

Archived

Amazon Web Services Power Machine Learning at Scale

 1

Introduction

Businesses are generating, storing, and analyzing more data than ever before. With the

latest advances in machine learning (ML), there is a drive to use these vast datasets to

build business outcomes. Although ML algorithms have been used for more than 20

years, recent increased momentum in ML adoption is due to advancements in

algorithmic frameworks and the compute infrastructure used to run the algorithms,

including computational accelerators. The resulting ability to iteratively and

automatically apply complex mathematical calculations to datasets at scale within

relatively short timeframes, has added a new dimension of possibilities for ML analytics.

Enterprises increasingly rely on machine learning to automate tasks, provide

personalized services to their end users, and increase efficiency of their operations by

gathering and analyzing data from a variety of deployed devices and sensors. To

leverage economies of scale and increased agility, companies are moving their ML

workloads to the AWS Cloud. For example, Marinus Analytics is using face search and

recognition technologies to combat human trafficking. Petabytes of patient data stored

and analyzed in the Philips HealthSuite digital platform is being analyzed using ML

methodologies. TuSimple is using ML in the AWS Cloud for the perceptual distance

capabilities of their L4 autonomous driving systems.

The present capabilities to scale and accelerate ML workloads are based on High

Performance Computing (HPC) methodologies and applications. Modern HPC can use

Graphics Processing Units (GPUs) for general purpose computing (GPGPUs),

massively parallel data storage, and low-latency, high-bandwidth network

communication to solve compute and memory intensive problems. These problems are

common to many scientific research domains, including climate research, fluid

dynamics, and life sciences. These disciplines share computational needs with areas of

ML, such as deep learning (DL). The computational demands of DL workloads make

them ideal candidates to benefit from HPC methods.

Archived

Amazon Web Services Power Machine Learning at Scale

 2

Data Management

Data underpins every ML project and determines not only what ML approach is best,

but also what infrastructure is most suitable to support it. Data sources, frequency of

revisions or updates to the data, and where the data will be stored, are all fundamental

questions that should be addressed before a project begins. It is not uncommon for data

to require standardization, normalization, and enrichment before it can be analyzed

using ML approaches. Although it is peripheral to traditional HPC or core ML offerings,

AWS offers ETL (extract, transform, load) processing services that can help during the

preprocessing stages of your project. There are a variety of ways that different machine

learning analytical processes might ingest, create, and transfer data. To support each

phase of these workflows, you must have storage infrastructure and data management

tools. At each phase, you must consider the durability and availability of the data. To

determine your storage requirements, you must consider the size of the dataset and the

performance requirements for reading, writing, and transferring the data.

The amount of data required for any machine learning and deep learning predictive

modeling application is directly proportional to the complexity of the problem and

algorithm. To determine whether the dataset size is sufficient, many data scientists

implement learning curves, k-fold cross validation resampling methods on smaller

datasets, and assessing confidence intervals of final results. In addition, there are

statistical heuristic methods for calculating an estimate for a suitable sample size based

on the number of classes, input features, and model parameters that should be

represented adequately by the training dataset. Therefore, datasets required for

machine learning applications are often pulled from database warehouses, streaming

IoT input, or centralized data lakes. Many customers use Amazon Simple Storage

Service (Amazon S3) as a target endpoint for their training datasets. ETL processing

services (Amazon Athena, AWS Glue, Amazon Redshift Spectrum) are functionally

complementary and can be architected to preprocess datasets stored in or targeted to

Amazon S3. In addition to transforming data with services like Amazon Athena and

Amazon Redshift Spectrum, you can use services such as AWS Glue to provide

metadata discovery and management features. The choice of ETL processing tool is

also largely dictated by the type of data you have. For example, tabular data processing

with Amazon Athena gives you the ability to manipulate your data files in Amazon S3

using Sequel Query Language (SQL). If your datasets or computations are not optimally

compatible with SQL, you can use Amazon Glue to seamlessly run Spark Jobs (Scala

and Python support) on data stored in your Amazon S3 buckets.

Archived

Amazon Web Services Power Machine Learning at Scale

 3

When you analyze the data, it is helpful to make a number of plots to visualize trends

that might inform your data preprocessing and modeling choices. Visualizations can

help identify accidental correlations, sampling biases, or non-response biases that are

indicative of whether your dataset is representative enough, and will generalize well to

new, unseen data. Data quality can be quantified by assessing frequency of errors or

missing values, noise-to-signal ratio, and heterogeneity of data distribution. AWS offers

two serverless options for visualizing data that have varying levels of appeal, depending

on your preferences. If you prefer a Graphical User Interface (GUI), you can use

Amazon QuickSight to build plots in an interactive dashboard using data stored in

Amazon S3. If you are more comfortable writing code, Amazon SageMaker offers

managed Jupyter Notebooks that you can connect to data in your Amazon S3 bucket,

for visualization tasks, and to run Amazon Athena and AWS Glue jobs.

Improvements to the compute layer, which include faster processors and more cores,

enables the processing of larger data workloads using increasingly complex algorithms.

Unfortunately, these improvements result in storage I/O processing bottlenecks when

you scale machine learning workloads. High performance parallelized file systems,

where metadata and I/O are managed by multiple or all compute nodes, can alleviate

bottlenecks that are introduced by file systems that rely on a single admin node for

routing management. The latency and response times required to sync a parallel file

system are determining factors in optimizing performance of parallelized file systems.

Deep learning training applications need storage systems that can constantly feed data

at low latencies and at high throughput. The I/O profiles for different machine learning

and deep learning applications are varied and can be random, which results in

significant performance challenges that you should carefully consider when you

architect for your use case. For example, GPU-accelerated analytics often use large

thread counts, each of which require low-latency access to segments of the data input.

In the case of CNNs for object detection, random access enabled by streaming

bandwidth and fast memory mapping improves performance. High performance,

random segment I/O access optimizes performance of RNNs and NLP type studies. A

common bottleneck at higher levels of compute is insufficient data flowing to GPU

workers. To avoid stalls, AWS provides flexibility by allowing for multiple storage options

to keep GPUs saturated. For applications running previous-generation NVIDIA GPUs,

such as K80 P2 instances, Amazon S3 is sufficient to maintain desirable concurrency

on I/O processing. For P3 instances that need high throughput, you can select a

massively parallel file system, such as Amazon Elastic File System (Amazon EFS) or

Amazon FSx for Lustre (Amazon FSx), to elastically scale to demand.

Moving a large dataset from one location to another can be an expensive process, so

before you decide to move your data, make sure you have considered all the

Archived

Amazon Web Services Power Machine Learning at Scale

 4

requirements and implications. In situations where Amazon S3 reads are not expected

to surpass the read performance abilities of Amazon S3, you don’t need to move the

data to a higher performance storage location. If your business needs don’t require

faster training speeds, you can train your models at slower speeds and use a storage

location that matches those performance requirements.

In other situations, training speed can be essential to meeting your business needs. In

these scenarios, migrating your prepared dataset to a parallel file system can unlock

greater training performance. Table 1 shows an example of some different file systems

and the relative rate that they can transfer images to a compute cluster. This

performance is only a single measurement and is only a suggestion for which file

systems you could use for a given workload. The specifics of a given workload might

change these results.

Table 1 – Comparison of the relative (to Amazon EFS) images per second

that each filesystem can load

File System Relative Speed

Amazon S3 <1.00

Amazon EFS 1

Amazon EBS 1.29

NVMe 1.4

RAMDisk 1.44

BeeGFS 1.6

Amazon FSx >1.60

After a model is trained, the process of evaluating the model is often not as data

dependent as the training step, which means you can store the evaluation data in

Amazon S3. This enables you to leverage tools such as Amazon SageMaker Batch

Transform to evaluate a model in a serverless environment.

For deployment, the data needs are highly dependent on the problem. If you will use the

model for a batch transform, you can prepare the data in advance and give it to the

model using either Amazon S3 or one of the other previously mentioned file systems.

Currently, Amazon S3 single object uploads are capped at 5GB and file sizes are set at

Archived

Amazon Web Services Power Machine Learning at Scale

 5

up to 5TB. To determine which file system to use, consider the size of the data you

need to process and your business requirements for processing speeds.

Real-time prediction systems are more complex because they are only considered real-

time for a short duration. In these cases, you might have to analyze and adjust each

step of the inference pipeline to ensure that inference times meet the requirements. For

real-time inference on AWS, you can use an Amazon SageMaker Deployment with a

server placed behind a load balancer that is auto-scaled to meet the API requests,

which are sent to the model endpoint. Another option is to use Amazon Elastic

Inference set to the correct amount of GPU-acceleration at reduced cost to provide

scaled inference, without needing an oversized instance. Similarly, you can deploy

popular deep learning framework models in SageMaker Neo to optimize the trained

model for the targeted hardware platform.

In extreme cases, a SageMaker deployment might have too much latency. In these

situations, to find the bottlenecks, you must perform an extensive audit of where the

data for inference is coming from, it’s path to the model, the hardware running the

model, and the response pathway. Only then can you make an assessment about

where you should deploy the model and how to perform the inference. In some cases,

getting the data you need from the disparate data sources can be limiting and you must

rearchitect your data access patterns to enable real-time inference. In other cases, you

need to bring the model closer to the data sources. In these cases, you deploy the

model at the edge to interact directly with data generators. Though AWS provides AWS

IoT GreenGrass to deploy Amazon SageMaker models to edge devices, to properly

implement your inference pipeline, you still must determine the data needs and

customizations for your pipeline. If you are in this situation, to make sure that your

model deployment is completed on time and to your performance needs, we

recommend that you seek help from AWS Professional Services.

Archived

Amazon Web Services Power Machine Learning at Scale

 6

Distributed Computation Frameworks

In principle, distributed computation frameworks provide a protocol of data processing

and node task distribution and management. Frameworks such as MapReduce and

Apache Spark1 also provide algorithms to split datasets into subsets and distribute them

across nodes in a compute cluster. Running an Apache Spark cluster on Amazon EMR

provides a managed framework that can process massive quantities of data. Amazon

EMR supports many instance types, including cluster compute instances that have

proportionally high CPU with increased network performance, which is well suited for

HPC applications. In addition, you can connect an Amazon SageMaker notebook

instance to a Spark EMR cluster to provide your users with a fully managed service for

data science and machine learning workflows powered by a distributed framework for

large dataset processing2.

When you perform deep learning (DL) at scale, for example, datasets are commonly too

large to fit into memory and therefore require pre-processing steps to partition the

datasets. In general, a best practice is to pack the data in parallel, distributed across

multiple machines. You should do this in a single run, and split the data into a small

number of files with a uniform number of partitions. When the data is partitioned, it is

readily accessible and easily fed in as batches across multiple machines. When the

data is split into a small number of files, the preparation job can be parallelized and thus

run faster. In addition to Amazon Spark EMR clusters, you can also use other tools,

such as Amazon SageMaker pipes and AWS Glue (depending on the dataset size).

There are also many third-party solutions, such as Big DL in Spark3 that run on Spark or

Python, which you can integrate into your existing data preparation pipelines.

During the data loading process, new data is fed to GPU workers to train the DL

algorithm. As a general rule, DL data loaders should be able to read data continuously

from contiguous locations, store data in a compact way, load and train in different

threads, and actively converse RAM. Ideally, all data processing should be run on the

CPU side, with the CPU processing the next batch of data so that it's ready to be fed to

the GPU. We recommend that you do not use GPU for data processing. Instead, only

use your GPUs for training the DL models to make sure that no consumer or producer

overlap occurs between the CPU (producer) and the GPU (consumer). In some

situations, such as image manipulation, data preparation can be compute intensive. In

these situations, you can use an AWS Batch job, which provides access to GPU-

enabled instances, to manipulate large datasets. Pairing the easy scaling and access to

the spot instance pricing of AWS Batch with OpenCV acceleration on NVIDIA GPUs,

can help you to efficiently prepare image datasets.

Archived

Amazon Web Services Power Machine Learning at Scale

 7

As a part of the loading process, data is shuffled (randomly sorted) into batches. For

data fed in at scale, we recommend that you shuffle the data before the data loading

process begins, and set the buffer size to a lower number for shuffling. To make sure

that shuffling happens without negative impacts on performance, run this on small,

partitioned files. We recommend that you run the loading process in parallel, and in

some instances, it can be helpful to prefetch more than one batch, such as when the

duration of processing time varies.

Most frameworks, such as Tensorflow, PyTorch, and MxNet, offer a data loading class

that you can use to load files from disk. These functions call a data loader function each

time the next chunk of data is needed, which allows you to process Big Data in batches.

Many frameworks also include a data pipelines feature that you can use to write a

custom pipeline in python code and library helper functions. Because there is more than

one option for a single framework and there are no universal formats (such as Open

Neural Network Exchange Format ONNX4) available, data pipelines can be difficult to

move to another DL platform. There are also several open source libraries that enable

parallel computing with task scheduling for analytics, such as Dask, Ray, PyToolz, and

ipyparallel.

The process of training ML models can be the most compute intensive step in the ML

process. Because model training is compute intensive, we suggest you complete

vertical scaling before horizontal scaling. Moving from CPUs to GPUs for model training

provides such significant performance increases that we do not recommend training

complex ML models on traditional CPUs. If the training times on a GPU card are

insufficient for your business needs, we recommend that you try a more powerful GPU

before moving to multiple GPUs. Similarly, we recommend that you leverage multiple

GPUs on a single node before you move to a multi-node solution. This approach

generally provides the best performance and limits the complexity of the system until

that complexity is necessary.

Before you make the choice to change from a single GPU instance to more complex

training infrastructures, we recommend that you complete a step-by-step analysis

process to make sure you consider all the implications. If a single GPU instance is not

training sufficiently fast, the first thing to evaluate is GPU utilization. Currently, the most

common approach to training DL models is to send batches of data to the GPU. The

GPU runs the data through the model and then the model weights are updated. With

this approach, the GPU goes through cycles: the GPU waits for data, computes that

data, then waits for more data. If the data cannot be prepared for the GPU faster than

the GPU is consuming the data, you have a data preparation bottleneck, and a faster

GPU will not significantly increase the model training speed.

Archived

Amazon Web Services Power Machine Learning at Scale

 8

To help make sure that data preparation is not a bottleneck, most DL frameworks

implement a data preparation framework designed to prepare datasets in parallel,

generally using the CPUs, and storing the prepared datasets in memory for GPU

consumption. When they operate ideally, these CPU tasks prepare data faster than the

GPU can consume it, but the system cannot always keep up with modern GPUs. If GPU

utilization during training is not maximized, first verify whether the compute resources

can handle more processes (in python, but potentially threads in another language)

dedicated to preparing data, because it's generally easy to increase the number.

When the CPUs cannot handle more processes, it becomes important to determine if

the data preparation processes are IO limited or compute limited. If IO limits the data

preparation, you can consider moving the data to a different data store. If the compute

process limits the data preparation, first make sure that only necessary processes are

running. For example, if the model takes in images at a resolution of 256 x 256 pixels,

but the images are stored at a resolution of 1920 x 1080 pixels, it might be possible—

depending on the algorithm—to first reduce all images to 256 x 256 pixels before the

training process starts. This change reduces the time needed to load an image and

removes some processing steps. In extreme cases, when you cannot reduce

preprocessing, you might have to use a data preparation cluster to generate batches of

data to feed the model. A data preparation cluster allows an arbitrary number of

processes to be used to prepare the data.

If your single GPU is fully saturated and the training time is still not sufficient to meet

your business needs, you can try a more powerful GPU, if one is available. Currently,

the P3 instance family has the most powerful GPU (the Volta V100) on AWS. After

switching to a more powerful GPU, you should repeat the process above to make sure

that the new GPU has not moved the bottleneck from the GPU to the data preparation.

If the GPU is still limiting and the training times are insufficient, then the next step is

moving to a node with more GPUs.

A single node with multiple GPUs has some advantages over the same number of

GPUs spread over many nodes. First, the communication between GPUs on a single

node is often over NVLink and is substantially faster than traveling across the network

to another node (regardless of whether nodes are in a placement group). Secondly, the

movement of information between the GPU memory and system memory is faster than

communication across the network. This allows many GPUs on the same node to more

quickly aggregate their parameter updates than multiple nodes communicating across

the network.

Archived

Amazon Web Services Power Machine Learning at Scale

 9

If the largest single node GPU system is not sufficiently fast and data preparation is not

a bottleneck, a cluster of GPU compute nodes is a possible solution. Deep learning

frameworks have different methods of enabling multi-node model training, so the ideal

cluster setup depends on the framework. An overview of all frameworks is beyond the

scope of this paper, but there are some commonalities to examine. To begin with, you

must have network communication for both data loading and parameter updates, which

makes network bandwidth and latency precious resources. Important first steps to

optimizing distributed training in AWS include choosing Amazon Elastic Compute Cloud

(Amazon EC2) instances with the highest bandwidth and locating all instances in a

placement group. Algorithms that reduce network communication, such as Horovod5,

and algorithms that lower precision representations of the parameters, are essential to

create performance improvements because network bandwidth is limited.

Build Compute Clusters to Fit the Workload

A good default architecture for deep learning training should include the Amazon S3,

Amazon EC2, Amazon Virtual Private Cloud (Amazon VPC), Amazon EC2 Auto

Scaling, Amazon Elastic Container Service for Kubernetes (Amazon EKS), and AWS

Identity and Access Management (IAM) services. Using a combination of these AWS

services built in an AWS CloudFormation template, such as the deep learning CFN

cluster in Figure 1, increases flexibility, reliability, and low-level transparency. Amazon

EC2 Auto Scaling enables the application to scale dynamically from a few nodes to over

a hundred, with the added benefit of providing multi-region coverage for resources in

replica sets. When you put them in containers and control them with Kubernetes on

Amazon EKS you create dependency isolation with a unified monitoring and logging

framework. In addition, it gives you the benefit of separating the OS and device-driver

layer dependencies. When you create a template for the application. you can identify

potential bottlenecks and areas of improvement quickly. The flexibility of

CloudFormation templates (or other infrastructure as code frameworks) enables you to

scale and use resources on demand, which guarantees that your infrastructure is

robust.

Archived

Amazon Web Services Power Machine Learning at Scale

 10

Figure 1 – AWS Deep Learning Cluster

A CloudFormation template for a deep learning cluster includes a VPC, a master instance with

SSH connection access, Auto Scaling, SQS to configure master and workers, and security

groups. In addition, it automatically creates an EFS mount for data access and launches activity

monitoring with AWS Lambda and Amazon Simple Notification Service (Amazon SNS)6.

For additional machine learning cluster architectural diagrams, see the Appendix.

Machine learning workflows can leverage different types of compute instances,

depending on the size of the dataset and the complexity of the computational algorithm

to be executed. The massively parallel nature of modern deep neural networks has

been greatly aided by advances in graphics processing units (GPUs). NVIDIA has

developed hardware and software specifically for common, deep learning operators.

Amazon EC2 P3 instances deliver high performance compute with up to eight NVIDIA®

V100 Tensor Core GPUs and up to 100 Gbps of networking throughput for machine

learning and HPC applications. The recently added P3dn.24xlarge instance provides up

to 4x the network bandwidth of a P3.16xlarge instance. With up to 100 Gbps of

networking throughput, 96 custom Intel® Xeon® Scalable (Skylake) vCPUs, eight

NVIDIA® V100 Tensor Core GPUs with 32 GB of memory each, and 1.8 TB of local

Archived

Amazon Web Services Power Machine Learning at Scale

 11

NVMe-based SSD storage, the P3dn.24xlarge instance types are optimized for

distributed machine learning and HPC applications. The P3 family of instance types

deliver up to one petaflop of mixed-precision performance per instance to significantly

accelerate performance. P3 family instances can reduce machine learning training

times from days to minutes, and can increase the number of simulations completed for

high performance computing by 3–4x.

Limitations to GPU memory always provide a boundary as we continue to test larger

Deep Neural Networks. This problem leads to smaller, mini-batch sizes and eventually

limits the size of the overall model. Techniques such as reducing network size and

cyclical learning rates can help, as do small changes such as gradient checkpointing

and lowering the level of Floating-Point precision. Amazon CloudWatch provides a

variety of tools to monitor not only GPU memory but also temperature, utilization, and

other metrics. You can also configure alerts for these metrics, and enable detailed

monitoring at the organization, user, and job level.

Although they are less commonly used because of a higher learning curve for utilization,

FPGA (Field Programmable Gate Array) instance types offer specialized hardware

acceleration that have shown advantages in time-to-results for machine learning

applications. For less computationally intensive machine learning applications that do

not require GPUs or high-memory inference studies, Amazon also offers a variety of

CPU instances with memory, storage and networking options to fit your needs. For

example, the Intel® Xeon®Scalable processors incorporated in Amazon C5 instances,

with the optimized deep learning functions in the Intel MKL-DNN library, can provide

sufficient compute capacity for some deep learning training workloads.

Advances in networking, such as the Elastic Fabric Adaptor (EFA) network interface for

Amazon EC2 instances, also provide support for HPC workloads that require intense

inter-node communication, such as computational fluid dynamics, weather modeling,

and large-scale simulations.

Archived

Amazon Web Services Power Machine Learning at Scale

 12

Modeling Using Hybrid Infrastructures

Hybrid infrastructure architectures refer to the use of on-premises servers or edge

computing device endpoints (off-cloud) together with in-the-cloud resources. There are

many different use cases that are optimized by implementing a hybrid architecture. For

example, these architectures can facilitate legacy IT application and data migration,

provide burstable compute to extend the capacity of an on-premises datacenter, or

provide an organization with a backup and disaster recovery solution.

AWS provides several services that support direct connectivity between on-premises

networks and the AWS Cloud. Hybrid network architectures often use VPN services and

AWS Direct Connect (DX) for connectivity to an AWS Region. In a hybrid network

architecture, data transfer to Amazon S3 can take place over a private connection

instead of using the default secure protocol (HTTPS) over the public internet. You can

also use the Amazon S3 Transfer Acceleration service to complete transfers using the

Amazon network and edge locations. You can implement AWS Identity and Access

Management resources to manage the integrated networks of your hybrid architectures.

For both machine learning and deep learning applications, hybrid architectures can

provide modularization of the analytical workflow to maximize the run-time efficiency

and lower latency of your application. By training jobs in the cloud, you can leverage the

infinitely scalable resources of the cloud. After a model is trained, it can be transferred

to an on-premises server or edge device to run inference workloads. Hybrid

architectures are also useful in cases where data privacy is a concern. In many cases,

you might not want to have all of your raw data in the cloud. Instead, you can

modularize the pre-processing steps for your models to implement an off-cloud feature

extraction application to extract only those features necessary for model training. This

reduces the level of information that is available for unsecure secondary inferences7.

Optimization of deep learning workload execution often includes limiting latency

between the data to be analyzed and the source of compute capacity. AWS services

such as AWS Storage Gateway, which combine multi-protocol storage capabilities with

high network connectivity, can enable you to use hybrid deep learning workloads that

require data migration or storage tiering to optimize for performance. You can also

optimize performance by selecting job scheduling methods that leverage the compute

capacity that is closest to the data source. When you deploy AI and deep learning to

millions of connected edge devices, as happens with autonomous vehicles and

synchronized smart cameras, we recommend that you create, train, and optimize your

models in the AWS Cloud, and then deploy them for inference to NVIDIA Jetson-

powered edge devices (for example) using AWS IoT Greengrass. This architecture

Archived

Amazon Web Services Power Machine Learning at Scale

 13

enables edge devices to act locally on real-time data while leveraging the cloud for

model management, which allows data to be returned to the cloud for durable storage

and continuous model optimization. Data returned to the cloud and targeted to an

Amazon S3 bucket can be used as a trigger in an automated CI/CD workflow by

integrating additional AWS services such as AWS CodeBuild, AWS CodePipeline,

Amazon CloudWatch, and AWS Lambda. You can also architect Lambda functions as

AWS Step Functions dependencies for managing an Amazon SageMaker instance

backed by HPC resources.

For DL or ML use cases at the edge that require memory-intensive processing, such as

image collation and IoT sensor stream capture, AWS Snowball Edge provides a storage

edge device that is enabled to run cloud services with specific Amazon EC2 instance

types, as well as AWS Lambda functions.

Conclusion

Areas of machine learning, such as deep learning, are specifically amenable to the

methods of high performance computing because they pose computationally bound

problems that benefit from model and data parallelism. The I/O profiles for different

machine learning and deep learning applications are varied, and the associated

randomness results in significant performance challenges. Improvements to the

compute layer—including faster processors and more cores—have enabled us to

process larger data workloads using increasingly complex algorithms. Advancements in

high performance parallelized file systems where metadata and I/O are managed by

multiple or all compute nodes has enabled elastic scalability to meet processing

demands.

When performing machine learning at scale, datasets often require pre-processing

steps to partition the data for optimal processing. In general, a best practice is to pack

the data in parallel, distributed across multiple machines. Compute machines

recommended for HPC clusters used in ML studies depend on the size of the dataset

and the complexity of the computational algorithm to be executed. In general, GPUs are

recommended for compute-intensive workloads, FPGAs provide specialized hardware

acceleration, and high-memory instances are recommended for running inference

studies. Optimization of machine learning workload execution often includes limiting

latency between the data to be analyzed and the source of compute capacity.

Archived

Amazon Web Services Power Machine Learning at Scale

 14

Contributors

Contributors to this document include:

• Mia Champion, Senior Data Scientist, Machine Learning Solutions Lab

• Amr Ragab, Senior Consultant, HPC

• Charles Frenzel, Data Scientist, Machine Learning Solutions Lab

• Tyler Mullenbach, Senior Data Scientist, Machine Learning Solutions Lab

• Jarvis Lee, Data Scientist, Machine Learning Solutions Lab

• Guarav Kaul, Senior Consultant, HPC

Further Reading

For additional information, see:

• Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

2017. Occupy the cloud: distributed computing for the 99%. In Proceedings of

the 2017 Symposium on Cloud Computing (SoCC '17). ACM, New York, NY,

USA, 445-451. DOI: https://doi.org/10.1145/3127479.3128601

• Ben-Nun, Tal, and Torsten Hoefler. “Demystifying Parallel and Distributed Deep

Learning: An In-Depth Concurrency Analysis.” ArXiv:1802.09941 [Cs], February

26, 2018. http://arxiv.org/abs/1802.09941.

• Open Neural Network Exchange Format ONNX http://onnx.ai/

• Automated and continuous deployment of Amazon SageMaker models with

AWS Step Functions. https://aws.amazon.com/blogs/machine-

learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-

with-aws-step-functions/

Document Revisions

Date Description

May 2019 First publication

https://doi.org/10.1145/3127479.3128601
http://arxiv.org/abs/1802.09941
http://onnx.ai/
https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/
https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/
https://aws.amazon.com/blogs/machine-learning/automated-and-continuous-deployment-of-amazon-sagemaker-models-with-aws-step-functions/

Archived

Amazon Web Services Power Machine Learning at Scale

 15

Appendix

The following are two additional architectural diagrams for machine learning clusters.

Figure 2 – Traditional HPC machine learning cluster

Figure 3 – Cloud Native machine learning cluster

Archived

Amazon Web Services Power Machine Learning at Scale

 16

1 M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster

computing with working sets. Proceedings of the 2nd USENIX conference on Hot

topics in cloud computing, 10:10, 2010.

2 T. Hughes and S. Stefani. Build Amazon SageMaker notebooks backed by Spark in

Amazon EMR. https://aws.amazon.com/blogs/machine-learning/build-amazon-

sagemaker-notebooks-backed-by-spark-in-amazon-emr/

3 Wang, Y., Qiu, X., Ding, D. et al. “BigDL: A distributed deep learning framework for big

data” 2018. https://arxiv.org/pdf/1804.05839.pdf

4 Whitepaper: HPC on AWS Redefines What is Possible

5 Alexander Sergeev, Mike Del Blaso ”Horovod: fast and easy distributed deep learning

in TensorFlow” arXiv:1802.05799[cs.LG], Feb 15, 2018

https://arxiv.org/abs/1802.05799

6 https://aws.amazon.com/blogs/compute/distributed-deep-learning-made-easy/

https://github.com/awslabs/deeplearning-cfn

7 Seyed Ali Osia, Ali Shahin Shamsabadi, Ali Taheri, Kleomenis Katevas, Sina

Sajadmanesh, Hamid R. Rabiee, Nicholas D. Lane, Hamed Haddadi. “A Hybrid Deep

Learning Architecture for Privacy-Preserving Mobile Analytics”. arXiv:1703.02952

[cs.LG], Apr 18, 2018. https://arxiv.org/pdf/1703.02952.pdf

Notes

https://aws.amazon.com/blogs/machine-learning/build-amazon-sagemaker-notebooks-backed-by-spark-in-amazon-emr/
https://aws.amazon.com/blogs/machine-learning/build-amazon-sagemaker-notebooks-backed-by-spark-in-amazon-emr/
https://arxiv.org/pdf/1804.05839.pdf
https://d1.awsstatic.com/HPC2019/AWS18-016%20Introduction%20to%20HPC%20on%20AWS%20Whitepaper.pdf
https://arxiv.org/abs/1802.05799
https://aws.amazon.com/blogs/compute/distributed-deep-learning-made-easy/
https://github.com/awslabs/deeplearning-cfn
https://arxiv.org/pdf/1703.02952.pdf

	Introduction
	Data Management
	Distributed Computation Frameworks
	Build Compute Clusters to Fit the Workload
	Modeling Using Hybrid Infrastructures
	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Appendix

