SNCF_Logo

Los ferrocarriles nacionales de Francia reducen costos y aumentan la productividad con AWS

2021

El servicio ferroviario estatal de Francia, Société Nationale des Chemins de Fer Français (SNCF), requiere una sofisticada tecnología para gestionar y mantener la seguridad a lo largo de su red ferroviaria de 32.000 km. En 2017 SNCF Réseau, la filial que mantiene y gestiona la infraestructura ferroviaria de la SNCF, se propuso crear una solución de visión artificial que pudiera utilizar las imágenes captadas por las cámaras de los trenes para ayudar a la empresa a identificar posibles fallos en las vías y prever las necesidades de mantenimiento. Sin embargo, los centros de datos heredados de SNCF Réseau carecían de la agilidad y el rendimiento que la empresa buscaba, se estaban quedando obsoletos y eran caros de mantener. Aunque SNCF Réseau tenía acceso a una gran cantidad de datos, estos estaban en gran parte segregados y no eran adecuados para el análisis necesario para facilitar la solución de machine learning (ML) que la empresa preveía. 

Con el objetivo de modernizar su infraestructura tecnológica, SNCF Réseau recurrió a Olexya, un socio consultor selecto de Amazon Web Services (AWS), para migrar las cargas de trabajo a AWS. La extensa migración implicó el cambio del marco de ML de SNCF Réseau a Amazon SageMaker, el servicio completamente administrado que ayuda a los científicos de datos y a los desarrolladores a preparar, crear, entrenar e implementar modelos de ML de alta calidad de forma rápida al reunir un amplio conjunto de capacidades creadas específicamente para el ML. En AWS, el equipo acabó reduciendo el tiempo de entrenamiento del modelo de 3 días a 10 horas. Ahora, en la nube, SNCF Réseau está preparada para realizar un mantenimiento predictivo basado en ML y datos inteligentes y liberar el potencial de ML para muchas más iniciativas que se desarrollan a nivel empresarial.

Tren de alta velocidad
kr_quotemark

Amazon SageMaker y las instancias de spot fueron fundamentales para simplificar y acelerar la implementación de algoritmos de IA/ML.”

Samuel Descroix
director de Datos Geográficos y Analíticos de
SNCF Réseau

Modernización y estandarización en la nube

SNCF Réseau es el resultado de la unificación en 2015 de la red ferroviaria francesa (conocida en Francia como Réseau Ferré de France, o RFF) y la SNCF, que tenían sistemas de información separados hasta 2015. Tras la unificación, la falta de estandarización obstaculizó los intercambios con los directivos de los países vecinos. Comprometida con el mantenimiento, la modernización y la seguridad, SNCF Réseau lleva mucho tiempo tratando de estandarizar los datos y maximizar su utilidad dentro de la empresa y en favor de sus socios europeos. Por ello, la empresa decidió rediseñar gran parte de su infraestructura heredada en AWS, a partir de 2019. SNCF Réseau determinó que la gran amplitud de AWS Managed Services satisfacía las expectativas de la empresa para acelerar la implementación de su estrategia de datos inteligentes, un nuevo y radical enfoque para recopilar y analizar rápidamente los datos relevantes para el mantenimiento de las vías férreas de la SNCF mediante sensores inteligentes casi en tiempo real.

Uno de los primeros pasos consistió en migrar los datos a un lago de datos en Amazon Simple Storage Service (Amazon S3), un servicio de almacenamiento de objetos que ofrece escalabilidad, disponibilidad de datos, seguridad y rendimiento líderes en la industria. Para evitar los problemas asociados a la segregación de datos y a las definiciones no estandarizadas, la empresa desarrolló el Modelo Ariane, un lenguaje unificado de modelado, para alinear las definiciones de los ferrocarriles, el tráfico, el mantenimiento y otros elementos clave, normalizando los datos tras su recopilación. Basado en RailTopoModel, un modelo sistemático utilizado por varias organizaciones europeas, Ariane representó un paso importante hacia la estandarización regional y la presentación de informes reglamentarios y de conformidad. 

Las definiciones claras y estandarizadas ayudaron a SNCF Réseau a crear un lago de datos “limpio” en Amazon S3. En lugar de volcar los datos sin procesar en un lago de datos y aplicar una capa de inteligencia para que tuvieran sentido, la empresa desarrolló los medios para definir los objetos relevantes para casos de uso particulares, incluyendo el ML, antes de introducirlos en el lago de datos. “A diferencia de una ciénaga de datos, un lago de datos limpio proporciona el nivel de confianza en los datos que los directivos necesitan para formular estrategias y tomar decisiones correctas”, afirma Samuel Descroix, director del Departamento de Datos Geográficos y Analíticos de SNCF Réseau. A partir de ahí, los científicos de datos podrían consultar los datos utilizando Amazon Athena, un servicio de consulta interactivo que simplifica el análisis de datos en Amazon S3 utilizando un lenguaje de consulta estructurado estándar.

Optimización del ML en AWS al mismo tiempo que se ahorran costos

Un elemento clave de la modernización de SNCF Réseau es su modelo de visión artificial, diseñado para identificar averías o problemas en las líneas ferroviarias y mejorar la previsión de las necesidades de mantenimiento. En 2017, la empresa ya había comenzado a desarrollar algoritmos para la inteligencia artificial (IA)/ML en Python 2.7 con el marco de aprendizaje profundo Caffe2, pero sus centros de datos en las instalaciones carecían de la agilidad y el rendimiento necesarios para proporcionar un ML eficaz, con modelos que tardaban hasta 3 días en entrenarse. Tras haber migrado a AWS y haber establecido un lago de datos limpio en Amazon S3, la empresa vio la oportunidad de aprovechar el conjunto de servicios de AWS adaptando su marco Caffe2 para ser entrenado e implementado desde entornos administrados por AWS, incluyendo Amazon SageMaker. 

En marzo de 2020, la compañía implementó el código en su nuevo sistema en AWS tras solo 2 semanas de puesta a punto. Con su marco de trabajo ahora en AWS, los científicos de datos de SNCF Réseau podían disfrutar de un alto grado de autonomía para los casos de uso de ML, con acceso a las herramientas adecuadas en el momento adecuado. “Muchas tareas que eran complejas para los científicos de datos se han simplificado enormemente en Amazon SageMaker”, afirma Descroix. Gracias a esta relativa simplicidad, los trabajos de entrenamiento se redujeron de 3 días en el antiguo sistema a solo 10 horas en el nuevo, una reducción de casi el 90 por ciento. 

Es más, la empresa también pudo optimizar los costos mediante el uso de Amazon Elastic Compute Cloud (Amazon EC2) y las instancias de spot, que ayudaron a SNCF Réseau a beneficiarse de la capacidad no utilizada de Amazon EC2 en AWS con un gran descuento. Teniendo en cuenta que las cargas de trabajo de ML de la empresa hacen un uso intensivo de los recursos informáticos, pero no dependen del tiempo, el uso de instancias de spot a través de Managed Spot Training in Amazon SageMaker demostró su utilidad, ahorrando finalmente al equipo un 71 por ciento en costos de ciencia de datos en comparación con las instancias bajo demanda de Amazon EC2. “Amazon SageMaker y las instancias de spot resultaron fundamentales para simplificar y acelerar la implementación de los algoritmos de IA/ML”, afirma Descroix. 

Olexya colaboró con SNCF Réseau en la creación de un equipo de DevOps para la implementación de AWS, lo que ayudó a reducir los tiempos de entrega del proyecto de 3 meses con el sistema heredado a menos de 48 horas con el nuevo sistema. Actualmente se está trabajando para reducir aún más estos plazos y automatizar completamente la implementación sin interacción humana, para lo cual es fundamental Amazon Elastic Kubernetes Service (Amazon EKS), que ayuda a los usuarios a proporcionar clústeres de alta disponibilidad y seguridad y automatiza tareas clave como la implementación de parches, el aprovisionamiento de nodos y las actualizaciones. Otro beneficio importante de crear con AWS es el tiempo de configuración de la infraestructura, incluida la puesta en marcha de modelos entrenados en datos con los recursos necesarios, que se redujo de 3-6 meses a solo 1 semana.

Ampliación del potencial del ML a nivel empresarial

Desde enero de 2021, SNCF Réseau está optimizando su algoritmo de mantenimiento predictivo para la producción y definiendo el hardware adecuado para sus vagones. Más allá del mantenimiento predictivo, la empresa espera llevar a cabo muchas más iniciativas basadas en el ML El éxito inicial de la empresa le ha ayudado a desarrollar lo que denomina una estrategia “Bring Your Own Algorithm” (BYOA, Introduzca Su Propio Algoritmo), que incorpora instancias de spot, Amazon SageMaker y Amazon EKS.

Operando en gran medida en AWS, la empresa puede iterar con mayor rapidez, el equivalente en términos de ML a pasar del ferrocarril tradicional al de alta velocidad. El equipo ha decidido incluso ampliar el alcance de la solución para incluir características de mapeo geográfico que ayuden a tomar decisiones clave y faciliten aún más el mantenimiento de los activos.


Acerca de SNCF Réseau

SNCF Réseau es una filial de la Société Nationale des Chemins de Fer Français (SNCF), la compañía nacional de ferrocarriles de Francia. SNCF Réseau opera y administra la infraestructura de la red ferroviaria de la SNCF, que consta de unos 32.000 km de líneas ferroviarias.

Beneficios de AWS

  • Reducción del tiempo de implementación de IA/ML de 3-6 meses a 1 semana
  • Implementación del código en el nuevo sistema de ML en 2 semanas
  • Reducción del tiempo de entrenamiento del modelo de 3 días a 10 horas
  • Reducción de los plazos de entrega del proyecto de 3 meses a menos de 48 horas
  • Reducción de los costos de ciencia de datos en un 71 %

Servicios de AWS utilizados

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) es un servicio web que ofrece capacidad informática en la nube segura y de tamaño modificable. Está diseñado para simplificar el uso de la informática en la nube a escala web para los desarrolladores.

Más información »

Instancias de spot de Amazon EC2

Las instancias de spot de Amazon EC2 le permiten aprovechar la capacidad de EC2 no utilizada en la nube de AWS. Las instancias de spot están disponibles con un descuento de hasta el 90 % en comparación con los precios bajo demanda. 

Más información »

Amazon SageMaker

Amazon SageMaker ayuda a los científicos de datos y a los desarrolladores a preparar, crear, entrenar e implementar modelos de machine learning (ML) de alta calidad de forma rápida al reunir un amplio conjunto de capacidades creadas específicamente para el ML.

Mas informaciónnbsp;»

Amazon EKS

Amazon Elastic Kubernetes Service (Amazon EKS) le ofrece la flexibilidad de iniciar, ejecutar y escalar aplicaciones de Kubernetes en la nube de AWS o en las instalaciones. 

Más información »


Introducción

Cada día crece el número de empresas de todos los tamaños y sectores que consiguen transformar sus negocios gracias a AWS. Contacte con nuestros expertos y empiece hoy mismo su traspaso a la nube de AWS.