Amazon Timestream supports high performance and cost-effective time series analytics, and defines time series as a native data type. It supports advanced aggregates, window functions, and complex data types such as arrays and rows. Amazon Timestream’s scheduled queries offer a fully managed, serverless, and scalable solution for calculating and storing aggregates, rollups, and other real-time analytics used to power frequently accessed operational dashboards, business reports, applications, and device-monitoring systems.
With scheduled queries, you simply define the queries that calculate aggregates, rollups, and other real-time analytics on your incoming data. Amazon Timestream periodically and automatically runs these queries and reliably writes the results into a configurable destination table. You can then point your dashboards, reports, applications, and monitoring systems to simply query the destination tables instead of querying the considerably larger source tables containing the incoming time-series data. This leads to increased performance while reducing cost by an order of magnitude.
The destination tables contain much less data than the source tables, thereby offering faster and less expensive data access and storage. Given that destination tables contain much less data than source tables, you can store data in the destination tables for a much longer duration at a fraction of the storage cost of the source table. You can also choose to reduce the data retention period of your source tables and further optimize your spend. Scheduled queries can therefore make time-series analytics faster, more cost effective, and more accessible to many more customers, so you can continue to make better data-driven business decisions.