AWS Machine Learning Blog

Category: Amazon SageMaker

An NHL faceoff shot from up top

Face-off Probability, part of NHL Edge IQ: Predicting face-off winners in real time during televised games

Face-off Probability is the National Hockey League’s (NHL) first advanced statistic using machine learning (ML) and artificial intelligence. It uses real-time Player and Puck Tracking (PPT) data to show viewers which player is likely to win a face-off before the puck is dropped, and provides broadcasters and viewers the opportunity to dive deeper into the […]

Reduce cost and development time with Amazon SageMaker Pipelines local mode

Creating robust and reusable machine learning (ML) pipelines can be a complex and time-consuming process. Developers usually test their processing and training scripts locally, but the pipelines themselves are typically tested in the cloud. Creating and running a full pipeline during experimentation adds unwanted overhead and cost to the development lifecycle. In this post, we […]

Create high-quality data for ML models with Amazon SageMaker Ground Truth

Machine learning (ML) has improved business across industries in recent years—from the recommendation system on your Prime Video account, to document summarization and efficient search with Alexa’s voice assistance. However, the question remains of how to incorporate this technology into your business. Unlike traditional rule-based methods, ML automatically infers patterns from data so as to […]

Celebrate over 20 years of AI/ML at Innovation Day

Be our guest as we celebrate 20 years of AI/ML innovation on October 25, 2022, 9:00 AM – 10:30 AM PT.  The first 1,500 people to register will receive $50 of AWS credits. Register here. Over the past 20 years, Amazon has delivered many world firsts for artificial intelligence (AI) and machine learning (ML). ML […]

Solution overview

Build flexible and scalable distributed training architectures using Kubeflow on AWS and Amazon SageMaker

In this post, we demonstrate how Kubeflow on AWS (an AWS-specific distribution of Kubeflow) used with AWS Deep Learning Containers and Amazon Elastic File System (Amazon EFS) simplifies collaboration and provides flexibility in training deep learning models at scale on both Amazon Elastic Kubernetes Service (Amazon EKS) and Amazon SageMaker utilizing a hybrid architecture approach. […]

Unified data preparation, model training, and deployment with Amazon SageMaker Data Wrangler and Amazon SageMaker Autopilot – Part 2

Depending on the quality and complexity of data, data scientists spend between 45–80% of their time on data preparation tasks. This implies that data preparation and cleansing take valuable time away from real data science work. After a machine learning (ML) model is trained with prepared data and readied for deployment, data scientists must often […]

How Sophos trains a powerful, lightweight PDF malware detector at ultra scale with Amazon SageMaker

This post is co-authored by Salma Taoufiq and Harini Kannan from Sophos. As a leader in next-generation cybersecurity, Sophos strives to protect more than 500,000 organizations and millions of customers across over 150 countries against evolving threats. Powered by threat intelligence, machine learning (ML), and artificial intelligence from Sophos X-Ops, Sophos delivers a broad and […]

Set up enterprise-level cost allocation for ML environments and workloads using resource tagging in Amazon SageMaker

As businesses and IT leaders look to accelerate the adoption of machine learning (ML), there is a growing need to understand spend and cost allocation for your ML environment to meet enterprise requirements. Without proper cost management and governance, your ML spend may lead to surprises in your monthly AWS bill. Amazon SageMaker is a […]

Provision and manage ML environments with Amazon SageMaker Canvas using AWS CDK and AWS Service Catalog

The proliferation of machine learning (ML) across a wide range of use cases is becoming prevalent in every industry. However, this outpaces the increase in the number of ML practitioners who have traditionally been responsible for implementing these technical solutions to realize business outcomes. In today’s enterprise, there is a need for machine learning to […]

New features for Amazon SageMaker Pipelines and the Amazon SageMaker SDK

Amazon SageMaker Pipelines allows data scientists and machine learning (ML) engineers to automate training workflows, which helps you create a repeatable process to orchestrate model development steps for rapid experimentation and model retraining. You can automate the entire model build workflow, including data preparation, feature engineering, model training, model tuning, and model validation, and catalog […]