Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Sign in
Your Saved List Become a Channel Partner Sell in AWS Marketplace Amazon Web Services Home Help

Amazon Sagemaker

Amazon SageMaker is a fully-managed platform that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. With Amazon SageMaker, all the barriers and complexity that typically slow down developers who want to use machine learning are removed. The service includes models that can be used together or independently to build, train, and deploy your machine learning models.

product logo

Automated Feature Engineering

Latest Version:
2.1
The solution performs automated feature engineering steps like feature selection and can remove rare levels from features.

    Product Overview

    The solution will provide machine learning related feature engineering as output for the user provided data. The feature engineering operations to execute on the data can be specified by user in a separate config file. This will simplify the task of feature engineering for a data scientist where in the user will only have to specify select few parameter to generate the output feature engineered data instead of writing the complete code for the feature engineering pipeline.

    Key Data

    Type
    Model Package
    Fulfillment Methods
    Amazon SageMaker

    Highlights

    • This solution will transform the user input data by running machine learning related feature engineering operations as specified by the user. It can process tabular data which can have categorical and numerical values. The solution provides the most common feature engineering techniques including but not limited to check for inter-feature interaction, apply polynomial and trigonometric functions and can also remove rare levels.

    • This solution saves a significant amount of time spent over developing and running different feature engineering operations on the data. This improves data scientists/engineers productivity and allows them to focus on more value added parts in the data science experiments.

    • PACE - ML is Mphasis Framework and Methodology for end-to-end machine learning development and deployment. PACE-ML enables organizations to improve the quality & reliability of the machine learning solutions in production and helps automate, scale, and monitor them. Need customized Machine Learning and Deep Learning solutions? Get in touch!

    Not quite sure what you’re looking for? AWS Marketplace can help you find the right solution for your use case. Contact us

    Pricing Information

    Use this tool to estimate the software and infrastructure costs based your configuration choices. Your usage and costs might be different from this estimate. They will be reflected on your monthly AWS billing reports.

    Contact us to request contract pricing for this product.


    Estimating your costs

    Choose your region and launch option to see the pricing details. Then, modify the estimated price by choosing different instance types.

    Version
    Region

    Software Pricing

    Model Realtime Inference$10.00/hr

    running on ml.m5.xlarge

    Model Batch Transform$20.00/hr

    running on ml.m5.large

    Infrastructure Pricing

    With Amazon SageMaker, you pay only for what you use. Training and inference is billed by the second, with no minimum fees and no upfront commitments. Pricing within Amazon SageMaker is broken down by on-demand ML instances, ML storage, and fees for data processing in notebooks and inference instances.
    Learn more about SageMaker pricing

    SageMaker Realtime Inference$0.23/host/hr

    running on ml.m5.xlarge

    SageMaker Batch Transform$0.115/host/hr

    running on ml.m5.large

    Model Realtime Inference

    For model deployment as Real-time endpoint in Amazon SageMaker, the software is priced based on hourly pricing that can vary by instance type. Additional infrastructure cost, taxes or fees may apply.
    InstanceType
    Realtime Inference/hr
    ml.m4.4xlarge
    $10.00
    ml.m5.4xlarge
    $10.00
    ml.m4.16xlarge
    $10.00
    ml.m5.2xlarge
    $10.00
    ml.p3.16xlarge
    $10.00
    ml.m4.2xlarge
    $10.00
    ml.c5.2xlarge
    $10.00
    ml.p3.2xlarge
    $10.00
    ml.c4.2xlarge
    $10.00
    ml.m4.10xlarge
    $10.00
    ml.c4.xlarge
    $10.00
    ml.m5.24xlarge
    $10.00
    ml.c5.xlarge
    $10.00
    ml.p2.xlarge
    $10.00
    ml.m5.12xlarge
    $10.00
    ml.p2.16xlarge
    $10.00
    ml.c4.4xlarge
    $10.00
    ml.m5.xlarge
    Vendor Recommended
    $10.00
    ml.c5.9xlarge
    $10.00
    ml.m4.xlarge
    $10.00
    ml.c5.4xlarge
    $10.00
    ml.p3.8xlarge
    $10.00
    ml.m5.large
    $10.00
    ml.c4.8xlarge
    $10.00
    ml.p2.8xlarge
    $10.00
    ml.c5.18xlarge
    $10.00

    Usage Information

    Model input and output details

    Input

    Summary

    This solution takes a zip file as an input. This zip file should contain exactly two files as mentioned below

    • Data.csv – This will be the data on which feature engineering is to be done
    • Config.json – This file should contain parameters specific to feature engineering tasks to be executed on the supplied data
    Input MIME type
    application/zip
    Sample input data

    Output

    Summary

    The output will be the feature engineered data in the form of a CSV file.

    Output MIME type
    text/csv
    Sample output data

    Additional Resources

    End User License Agreement

    By subscribing to this product you agree to terms and conditions outlined in the product End user License Agreement (EULA)

    Support Information

    Automated Feature Engineering

    For any assistance, please reach out at:

    AWS Infrastructure

    AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

    Learn More

    Refund Policy

    Currently we do not support refunds, but you can cancel your subscription to the service at any time.

    Customer Reviews

    There are currently no reviews for this product.
    View all