
Web Application Hosting in the
AWS Cloud

First Published May 2010

Updated August 20, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

An overview of traditional web hosting ... 1

Web application hosting in the cloud using AWS ... 2

How AWS can solve common web application hosting issues 2

An AWS Cloud architecture for web hosting ... 4

Key components of an AWS web hosting architecture ... 6

Key considerations when using AWS for web hosting ... 16

Conclusion ... 18

Contributors ... 19

Further reading .. 19

Document versions .. 19

Abstract

Traditional on-premises web architectures require complex solutions and accurate

reserved capacity forecast in order to ensure reliability. Dense peak traffic periods and

wild swings in traffic patterns result in low utilization rates of expensive hardware. This

yields high operating costs to maintain idle hardware, and an inefficient use of capital for

underused hardware.

Amazon Web Services (AWS) provides a reliable, scalable, secure, and highly

performing infrastructure for the most demanding web applications. This infrastructure

matches IT costs with customer traffic patterns in near-real time.

This whitepaper is meant for IT Managers and System Architects who want to

understand how to run traditional web architectures in the cloud to achieve elasticity,

scalability, and reliability.

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 1

An overview of traditional web hosting

Scalable web hosting is a well-known problem space. The following image depicts a

traditional web hosting architecture that implements a common three-tier web

application model. In this model, the architecture is separated into presentation,

application, and persistence layers. Scalability is provided by adding hosts at these

layers. The architecture also has built-in performance, failover, and availability features.

The traditional web hosting architecture is easily ported to the AWS Cloud with only a

few modifications.

A traditional web hosting architecture

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 2

The following sections look at why and how such an architecture should be and could

be deployed in the AWS Cloud.

Web application hosting in the cloud using AWS

The first question you should ask concerns the value of moving a classic web

application hosting solution into the AWS Cloud. If you decide that the cloud is right for

you, you’ll need a suitable architecture. This section helps you evaluate an AWS Cloud

solution. It compares deploying your web application in the cloud to an on-premises

deployment, presents an AWS Cloud architecture for hosting your application, and

discusses the key components of the AWS Cloud Architecture solution.

How AWS can solve common web application hosting

issues

If you’re responsible for running a web application, you could face a variety of

infrastructure and architectural issues for which AWS can provide seamless and cost-

effective solutions. The following are some of the benefits of using AWS over a

traditional hosting model.

A cost-effective alternative to oversized fleets needed to handle peaks

In the traditional hosting model, you have to provision servers to handle peak capacity.

Unused cycles are wasted outside of peak periods. Web applications hosted by AWS

can leverage on-demand provisioning of additional servers, so you can constantly

adjust capacity and costs to actual traffic patterns.

For example, the following graph shows a web application with a usage peak from 9AM

to 3PM, and less usage for the remainder of the day. An automatic scaling approach

based on actual traffic trends, which provisions resources only when needed, would

result in less wasted capacity and a greater than 50 percent reduction in cost.

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 3

An example of wasted capacity in a classic hosting model

A scalable solution to handling unexpected traffic peaks

A more dire consequence of the slow provisioning associated with a traditional hosting

model is the inability to respond in time to unexpected traffic spikes. There are a

number of stories about web applications becoming unavailable because of an

unexpected spike in traffic after the site is mentioned in popular media. In the AWS

Cloud, the same on-demand capability that helps web applications scale to match

regular traffic spikes can also handle an unexpected load. New hosts can be launched

and are readily available in a matter of minutes, and they can be taken offline just as

quickly when traffic returns to normal.

An on-demand solution for test, load, beta, and preproduction

environments

The hardware costs of building and maintaining a traditional hosting environment for a

production web application don’t stop with the production fleet. Often, you need to

create preproduction, beta, and testing fleets to ensure the quality of the web

application at each stage of the development lifecycle. While you can make various

optimizations to ensure the highest possible use of this testing hardware, these parallel

fleets are not always used optimally, and a lot of expensive hardware sits unused for

long periods of time.

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 4

In the AWS Cloud, you can provision testing fleets as and when you need them. This

not only eliminates the need for pre-provisioning resources days or months prior to the

actual usage, but gives you the flexibility to tear down the infrastructure components

when you do not need them. Additionally, you can simulate user traffic on the AWS

Cloud during load testing. You can also use these parallel fleets as a staging

environment for a new production release. This enables quick switchover from current

production to a new application version with little or no service outages.

An AWS Cloud architecture for web hosting

The following figure provides another look at that classic web application architecture

and how it can leverage the AWS Cloud computing infrastructure.

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 5

An example of a web hosting architecture on AWS

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 6

1. DNS services with Amazon Route 53 – Provides DNS services to simplify

domain management.

2. Edge caching with Amazon CloudFront – Edge caches high-volume content

to decrease the latency to customers.

3. Edge security for Amazon CloudFront with AWS WAF – Filters malicious

traffic, including cross site scripting (XSS) and SQL injection via customer-

defined rules.

4. Load balancing with Elastic Load Balancing (ELB) – Enables you to spread

load across multiple Availability Zones and AWS Auto Scaling groups for

redundancy and decoupling of services.

5. DDoS protection with AWS Shield – Safeguards your infrastructure against

the most common network and transport layer DDoS attacks automatically.

6. Firewalls with security groups – Moves security to the instance to provide a

stateful, host-level firewall for both web and application servers.

7. Caching with Amazon ElastiCache – Provides caching services with Redis or

Memcached to remove load from the app and database, and lower latency for

frequent requests.

8. Managed database with Amazon Relational Database Service (Amazon

RDS) – Creates a highly available, multi-AZ database architecture with six

possible DB engines.

9. Static storage and backups with Amazon Simple Storage Service (Amazon

S3) – Enables simple HTTP-based object storage for backups and static assets

like images and video.

Key components of an AWS web hosting architecture

The following sections outline some of the key components of a web hosting

architecture deployed in the AWS Cloud, and explain how they differ from a traditional

web hosting architecture.

https://aws.amazon.com/route53/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/waf/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/shield/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 7

Network management

In the AWS Cloud, the ability to segment your network from that of other customers

enables a more secure and scalable architecture. While security groups provide host-

level security (see the Host security section), Amazon Virtual Private Cloud (Amazon

VPC) enables you to launch resources in a logically isolated and virtual network that

you define.

Amazon VPC is a service that gives you full control over the details of your networking

setup in AWS. Examples of this control include creating internet subnets for web

servers, and private subnets with no internet access for your databases. Amazon VPC

enables you to create hybrid architectures by using hardware virtual private networks

(VPNs), and use the AWS Cloud as an extension of your own data center.

Amazon VPC also includes IPv6 support in addition to traditional IPv4 support for your

network.

Content delivery

When your web traffic is geo-dispersed, it’s not always feasible and certainly not cost

effective to replicate your entire infrastructure across the globe. A Content Delivery

Network (CDN) provides you the ability to utilize its global network of edge locations to

deliver a cached copy of web content such as videos, webpages, images and so on to

your customers. To reduce response time, the CDN utilizes the nearest edge location to

the customer or originating request location to reduce the response time. Throughput is

dramatically increased given that the web assets are delivered from cache. For dynamic

data, many CDNs can be configured to retrieve data from the origin servers.

You can use CloudFront to deliver your website, including dynamic, static, and

streaming content, using a global network of edge locations. CloudFront automatically

routes requests for your content to the nearest edge location, so content is delivered

with the best possible performance. CloudFront is optimized to work with other AWS

services, like Amazon S3 and Amazon Elastic Compute Cloud (Amazon EC2).

CloudFront also works seamlessly with any origin server that is not an AWS origin

server, which stores the original, definitive versions of your files.

Like other AWS services, there are no contracts or monthly commitments for using

CloudFront – you pay only for as much or as little content as you actually deliver

through the service.

https://aws.amazon.com/vpc/
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv4
https://aws.amazon.com/caching/cdn/
https://aws.amazon.com/caching/cdn/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 8

Additionally, any existing solutions for edge caching in your web application

infrastructure should work well in the AWS Cloud.

Managing public DNS

Moving a web application to the AWS Cloud requires some Domain Name System

(DNS) changes. To help you manage DNS routing, AWS provides Amazon Route 53, a

highly available and scalable cloud DNS web service. Route 53 is designed to give

developers and businesses an extremely reliable and cost-effective way to route end

users to internet applications by translating names such as “www.example.com” into

numeric IP addresses such as 192.0.2.1, that computers use to connect to each other.

Route 53 is fully compliant with IPv6 as well.

Host security

In addition to inbound network traffic filtering at the edge, AWS also recommends web

applications apply network traffic filtering at the host level. Amazon EC2 provides a

feature named security groups. A security group is analogous to an inbound network

firewall, for which you can specify the protocols, ports, and source IP ranges that are

allowed to reach your EC2 instances.

You can assign one or more security groups to each EC2 instance. Each security group

allows appropriate traffic in to each instance. Security groups can be configured so that

only specific subnets, IP addresses, and resources have access to an EC2 instance.

Alternatively, they can reference other security groups to limit access to EC2 instances

that are in specific groups.

In the AWS web hosting architecture in Figure 3, the security group for the web server

cluster might allow access only from the web-layer Load Balancer and only over TCP on

ports 80 and 443 (HTTP and HTTPS). The application server security group, on the

other hand, might allow access only from the application-layer Load Balancer. In this

model, your support engineers would also need to access the EC2 instances, what can

be achieved with AWS Systems Manager Session Manager. For a deeper discussion

on security, the AWS Cloud Security, which contains security bulletins, certification

information, and security whitepapers that explain the security capabilities of AWS.

https://aws.amazon.com/route53/what-is-dns/
https://aws.amazon.com/route53/
https://en.wikipedia.org/wiki/IPv6
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://aws.amazon.com/security/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 9

Load balancing across clusters

Hardware load balancers are a common network appliance used in traditional web

application architectures. AWS provides this capability through the Elastic Load

Balancing (ELB) service. ELB automatically distributes incoming application traffic

across multiple targets, such as Amazon EC2 instances, containers, IP addresses,

AWS Lambda functions, and virtual appliances. It can handle the varying load of your

application traffic in a single Availability Zone or across multiple Availability Zones.

Elastic Load Balancing offers four types of load balancers that all feature the high

availability, automatic scaling, and robust security necessary to make your applications

fault tolerant.

Finding other hosts and services

In the traditional web hosting architecture, most of your hosts have static IP addresses.

In the AWS Cloud, most of your hosts have dynamic IP addresses. Although every EC2

instance can have both public and private DNS entries and will be addressable over the

internet, the DNS entries and the IP addresses are assigned dynamically when you

launch the instance. They cannot be manually assigned. Static IP addresses (Elastic IP

addresses in AWS terminology) can be assigned to running instances after they are

launched. You should use Elastic IP addresses for instances and services that require

consistent endpoints, such as primary databases, central file servers, and EC2-hosted

load balancers.

Caching within the web application

In-memory application caches can reduce load on services and improve performance

and scalability on the database tier by caching frequently used information. Amazon

ElastiCache is a web service that makes it easy to deploy, operate, and scale an in-

memory cache in the cloud. You can configure the in-memory cache you create to

automatically scale with load and to automatically replace failed nodes. ElastiCache is

protocol-compliant with Memcached and Redis, which simplifies cloud migrations for

customers running these services on-premises.

Database configuration, backup, and failover

Many web applications contain some form of persistence, usually in the form of a

relational or non-relational database. AWS offers both relational and non-relational

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/lambda/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/products/databases/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 10

database services. Alternatively, you can deploy your own database software on an

EC2 instance. The following table summarizes these options, which are discussed in

greater detail in this section.

Table 1 — Relational and non-relational database solutions

 Relational database solutions Non-relational database solutions

Managed

database

service

Amazon RDS for MySQL

Oracle

SQL Server

MariaDB

PostgreSQL

Amazon Aurora

Amazon DynamoDB

Amazon Keyspaces

Amazon Neptune

Amazon QLDB

Amazon Timestream

Self-managed Hosting a relational database

management system (DBMS)

on an Amazon EC2 instance

Hosting a non-relational database

solution on an EC2 instance

Amazon RDS

Amazon RDS gives you access to the capabilities of a familiar MySQL, PostgreSQL,

Oracle, and Microsoft SQL Server database engine. The code, applications, and tools

that you already use can be used with Amazon RDS. Amazon RDS automatically

patches the database software and backs up your database, and it stores backups for a

user-defined retention period. It also supports point-in-time recovery. You can benefit

from the flexibility of being able to scale the compute resources or storage capacity

associated with your relational database instance by making a single API call.

Amazon RDS Multi-AZ deployments increase your database availability and protect

your database against unplanned outages. Amazon RDS Read Replicas provide read-

only replicas of your database, so you can scale out beyond the capacity of a single

database deployment for read-heavy database workloads. As with all AWS services, no

upfront investments are required, and you pay only for the resources you use.

https://aws.amazon.com/rds/mysql/
https://www.oracle.com/index.html
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://mariadb.org/
https://www.postgresql.org/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/keyspaces/
https://aws.amazon.com/neptune/
https://aws.amazon.com/qldb/
https://aws.amazon.com/timestream/
https://aws.amazon.com/ec2/
https://aws.amazon.com/rds/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 11

Hosting a relational database management system (RDBMS) on an Amazon EC2
instance

In addition to the managed Amazon RDS offering, you can install your choice of

RDBMS (such as MySQL, Oracle, SQL Server, or DB2) on an EC2 instance and

manage it yourself. AWS customers hosting a database on Amazon EC2 successfully

use a variety of primary/standby and replication models, including mirroring for read-

only copies and log shipping for always-ready passive standbys.

When managing your own database software directly on Amazon EC2, you should also

consider the availability of fault-tolerant and persistent storage. For this purpose, we

recommend that databases running on Amazon EC2 use Amazon Elastic Block Store

(Amazon EBS) volumes, which are similar to network-attached storage.

For EC2 instances running a database, you should place all database data and logs on

EBS volumes. These will remain available even if the database host fails. This

configuration allows for a simple failover scenario, in which a new EC2 instance can be

launched if a host fails, and the existing EBS volumes can be attached to the new

instance. The database can then pick up where it left off.

EBS volumes automatically provide redundancy within the Availability Zone. If the

performance of a single EBS volume is not sufficient for your databases needs, volumes

can be striped to increase input/output operations per second (IOPS) performance for

your database.

For demanding workloads, you can also use EBS Provisioned IOPS, where you specify

the IOPS required. If you use Amazon RDS, the service manages its own storage so

you can focus on managing your data.

Non-relational databases

In addition to support for relational databases, AWS also offers a number of managed

non-relational databases:

• Amazon DynamoDB is a fully managed NoSQL database service that provides

fast and predictable performance with seamless scalability. Using the AWS

Management Console or the DynamoDB API, you can scale capacity up or down

without downtime or performance degradation. Because DynamoDB handles the

administrative burdens of operating and scaling distributed databases to AWS,

https://aws.amazon.com/ebs/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.API.html

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 12

you don’t have to worry about hardware provisioning, setup and configuration,

replication, software patching, or cluster scaling.

• Amazon DocumentDB (with MongoDB compatibility) is a database service that

is purpose-built for JSON data management at scale, fully managed and runs on

AWS, and enterprise-ready with high durability.

• Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and

managed Apache Cassandra-compatible database service. With Amazon

Keyspaces, you can run your Cassandra workloads on AWS using the same

Cassandra application code and developer tools that you use today.

• Amazon Neptune is a fast, reliable, fully managed graph database service that

makes it easy to build and run applications that work with highly connected

datasets. The core of Amazon Neptune is a purpose-built, high-performance

graph database engine optimized for storing billions of relationships and querying

the graph with milliseconds latency.

• Amazon Quantum Ledger Database (QLDB) is a fully managed ledger

database that provides a transparent, immutable, and cryptographically verifiable

transaction log owned by a central trusted authority. Amazon QLDB can be used

to track each and every application data change and maintains a complete and

verifiable history of changes over time.

• Amazon Timestream is a fast, scalable, and serverless time series database

service for IoT and operational applications that makes it easy to store and

analyze trillions of events per day up to 1,000 times faster and at as little as

1/10th the cost of relational databases.

Additionally, you can use Amazon EC2 to host other non-relational database

technologies you may be working with.

Storage and backup of data and assets

There are numerous options within the AWS Cloud for storing, accessing, and backing

up your web application data and assets. Amazon S3 provides a highly available and

redundant object store. S3 is a great storage solution for static objects, such as images,

videos, and other static media. S3 also supports edge caching and streaming of these

assets by interacting with CloudFront.

https://aws.amazon.com/documentdb/
https://aws.amazon.com/documentdb/what-is-mongodb/
https://aws.amazon.com/keyspaces/
https://cassandra.apache.org/_/index.html
https://aws.amazon.com/neptune
https://aws.amazon.com/qldb/
https://aws.amazon.com/timestream
https://aws.amazon.com/s3/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 13

For attached file system-like storage, EC2 instances can have EBS volumes attached.

These act like mountable disks for running EC2 instances. Amazon EBS is great for

data that needs to be accessed as block storage and that requires persistence beyond

the life of the running instance, such as database partitions and application logs.

In addition to having a lifetime that is independent of the EC2 instance, you can take

snapshots of EBS volumes and store them in S3. Because EBS snapshots only back up

changes since the previous snapshot, more frequent snapshots can reduce snapshot

times. You can also use an EBS snapshot as a baseline for replicating data across

multiple EBS volumes and attaching those volumes to other running instances.

EBS volumes can be as large as 16TB, and multiple EBS volumes can be striped for

even larger volumes or for increased input/output (I/O) performance. To maximize the

performance of your I/O-intensive applications, you can use Provisioned IOPS volumes.

Provisioned IOPS volumes are designed to meet the needs of I/O-intensive workloads,

particularly database workloads that are sensitive to storage performance and

consistency in random access I/O throughput.

You specify an IOPS rate when you create the volume and Amazon EBS provisions that

rate for the lifetime of the volume. Amazon EBS currently supports IOPS per volume

ranging from maximum of 16000 (for all instance types) up to 64,000 (for instances built

on Nitro System). You can stripe multiple volumes together to deliver thousands of

IOPS per instance to your application. Apart from this, for higher throughput and

mission critical workloads requiring sub-millisecond latency, you can use io2 block

express volume type which can support up-to 256,000 IOPS with a maximum storage

capacity of 64TB.

Automatically scaling the fleet

One of the key differences between the AWS Cloud architecture and the traditional

hosting model is that AWS can automatically scale the web application fleet on demand

to handle changes in traffic. In the traditional hosting model, traffic forecasting models

are generally used to provision hosts ahead of projected traffic. In AWS, instances can

be provisioned on the fly according to a set of triggers for scaling the fleet out and back

in.

The Auto Scaling service can create capacity groups of servers that can grow or shrink

on demand. Auto Scaling also works directly with Amazon CloudWatch for metrics data

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://aws.amazon.com/autoscaling/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 14

and with Elastic Load Balancing to add and remove hosts for load distribution. For

example, if the web servers are reporting greater than 80 percent CPU utilization over a

period of time, an additional web server could be quickly deployed and then

automatically added to the load balancer for immediate inclusion in the load balancing

rotation.

As shown in the AWS web hosting architecture model, you can create multiple Auto

Scaling groups for different layers of the architecture, so that each layer can scale

independently. For example, the web server Auto Scaling group might trigger scaling in

and out in response to changes in network I/O, whereas the application server Auto

Scaling group might scale out and in according to CPU utilization. You can set

minimums and maximums to help ensure 24/7 availability and to cap the usage within a

group.

Auto Scaling triggers can be set both to grow and to shrink the total fleet at a given layer

to match resource utilization to actual demand. In addition to the Auto Scaling service,

you can scale Amazon EC2 fleets directly through the Amazon EC2 API, which allows

for launching, terminating, and inspecting instances.

Additional security features

The number and sophistication of Distributed Denial of Service (DDoS) attacks are

rising. Traditionally, these attacks are difficult to fend off. They often end up being costly

in both mitigation time and power spent, as well as the opportunity cost from lost visits

to your website during the attack. There are a number of AWS factors and services that

can help you defend against such attacks. One of them is the scale of the AWS

network. The AWS infrastructure is quite large, and enables you to leverage our scale to

optimize your defense. Several services, including Elastic Load Balancing, Amazon

CloudFront, and Amazon Route 53, are effective at scaling your web application in

response to a large increase in traffic.

The infrastructure protection services in particular help with your defense strategy:

• AWS Shield is a managed DDoS protection service that helps safeguard against

various forms of DDoS attack vectors. The standard offering of AWS Shield is

free and automatically active throughout your account. This standard offering

helps to defend against the most common network and transportation layer

attacks. In addition to this level, the advanced offering grants higher levels of

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/route53/
https://aws.amazon.com/shield/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 15

protection against your web application by providing you with near real-time

visibility into an ongoing attack, as well as integrating at higher levels with the

services mentioned earlier. Additionally, you get access to the AWS DDoS

Response Team (DRT) to help mitigate large-scale and sophisticated attacks

against your resources.

• AWS WAF (Web Application Firewall) is designed to protect your web

applications from attacks that can compromise availability or security, or

otherwise consume excessive resources. AWS WAF works in line with

CloudFront or Application Load Balancer, along with your custom rules, to defend

against attacks such as cross-site scripting, SQL injection, and DDoS. As with

most AWS services, AWS WAF comes with a fully featured API that can help

automate the creation and editing of rules for your AWS WAF instance as your

security needs change.

• AWS Firewall Manager is a security management service which allows you to

centrally configure and manage firewall rules across your accounts and

applications in AWS Organizations. As new applications are created, Firewall

Manager makes it easy to bring new applications and resources into compliance

by enforcing a common set of security rules.

Failover with AWS

Another key advantage of AWS over traditional web hosting is the Availability Zones

that give you easy access to redundant deployment locations. Availability Zones are

physically distinct locations that are engineered to be insulated from failures in other

Availability Zones. They provide inexpensive, low-latency network connectivity to other

Availability Zones in the same AWS Region. As the AWS web hosting architecture

diagram shows, AWS recommends that you deploy EC2 hosts across multiple

Availability Zones to make your web application more fault tolerant.

It’s important to ensure that there are provisions for migrating single points of access

across Availability Zones in the case of failure. For example, you should set up a

database standby in a second Availability Zone so that the persistence of data remains

consistent and highly available, even during an unlikely failure scenario. You can do this

on Amazon EC2 or Amazon RDS with the click of a button.

https://aws.amazon.com/waf/
https://aws.amazon.com/firewall-manager/
https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 16

While some architectural changes are often required when moving an existing web

application to the AWS Cloud, there are significant improvements to scalability,

reliability, and cost-effectiveness that make using the AWS Cloud well worth the effort.

The next section discusses those improvements.

Key considerations when using AWS for web

hosting

There are some key differences between the AWS Cloud and a traditional web

application hosting model. The previous section highlighted many of the key areas that

you should consider when deploying a web application to the cloud. This section points

out some of the key architectural shifts that you need to consider when you bring any

application into the cloud.

No more physical network appliances

You cannot deploy physical network appliances in AWS. For example, firewalls, routers,

and load balancers for your AWS applications can no longer reside on physical devices,

but must be replaced with software solutions. There is a wide variety of enterprise-

quality software solutions, whether for load balancing or establishing a VPN connection.

This is not a limitation of what can be run on the AWS Cloud, but it is an architectural

change to your application if you use these devices today.

Firewalls everywhere

Where you once had a simple demilitarized zone (DMZ) and then open communications

among your hosts in a traditional hosting model, AWS enforces a more secure model, in

which every host is locked down. One of the steps in planning an AWS deployment is

the analysis of traffic between hosts. This analysis will guide decisions on exactly what

ports need to be opened. You can create security groups for each type of host in your

architecture. You can also create a large variety of simple and tiered security models to

enable the minimum access among hosts within your architecture. The use of network

access control lists within Amazon VPC can help lock down your network at the subnet

level.

https://en.wikipedia.org/wiki/DMZ_(computing)

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 17

Consider the availability of multiple data centers

Think of Availability Zones within an AWS Region as multiple data centers. EC2

instances in different Availability Zones are both logically and physically separated, and

they provide an easy-to-use model for deploying your application across data centers

for both high availability and reliability. Amazon VPC as a Regional service enables you

to leverage Availability Zones while keeping all of your resources in the same logical

network.

Treat hosts as ephemeral and dynamic

Probably the most important shift in how you might architect your AWS application is

that Amazon EC2 hosts should be considered ephemeral and dynamic. Any application

built for the AWS Cloud should not assume that a host will always be available and

should be designed with the knowledge that any data in the EC2 instant stores will be

lost if an EC2 instance fails.

When a new host is brought up, you shouldn’t make assumptions about the IP address

or location within an Availability Zone of the host. Your configuration model must be

flexible, and your approach to bootstrapping a host must take the dynamic nature of the

cloud into account. These techniques are critical for building and running a highly

scalable and fault-tolerant application.

Consider containers and serverless

This whitepaper primarily focuses on a more traditional web architecture. However,

consider modernizing your web applications by moving to Containers and Serverless

technologies, leveraging services like AWS Fargate and AWS Lambda to enable you to

abstracts away the use of virtual machines to perform compute tasks. With serverless

computing, infrastructure management tasks like capacity provisioning and patching are

handled by AWS, so you can build more agile applications that allow you to innovate

and respond to change faster.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/containers/
https://aws.amazon.com/serverless/
https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 18

Consider automated deployment

• Amazon Lightsail is an easy-to-use virtual private server (VPS) that offers you

everything needed to build an application or website, plus a cost-effective,

monthly plan. Lightsail is ideal for simpler workloads, quick deployments, and

getting started on AWS. It’s designed to help you start small, and then scale as

you grow.

• AWS Elastic Beanstalk is an easy-to-use service for deploying and scaling web

applications and services developed with Java, .NET, PHP, Node.js, Python,

Ruby, Go, and Docker on familiar servers such as Apache, NGINX, Passenger,

and IIS. You can simply upload your code, and Elastic Beanstalk automatically

handles the deployment, capacity provisioning, load balancing, automatic

scaling, and application health monitoring. At the same time, you retain full

control over the AWS resources powering your application and can access the

underlying resources at any time.

• AWS App Runner is a fully managed service that makes it easy for developers

to quickly deploy containerized web applications and APIs, at scale and with no

prior infrastructure experience required. Start with your source code or a

container image. App Runner automatically builds and deploys the web

application and load balances traffic with encryption. App Runner also scales up

or down automatically to meet your traffic needs.

• AWS Amplify is a set of tools and services that can be used together or on their

own, to help front-end web and mobile developers build scalable full stack

applications, powered by AWS. With Amplify, you can configure app backends

and connect your app in minutes, deploy static web apps in a few clicks, and

easily manage app content outside the AWS Management Console.

Conclusion

There are numerous architectural and conceptual considerations when you are

contemplating migrating your web application to the AWS Cloud. The benefits of having

a cost-effective, highly scalable, and fault-tolerant infrastructure that grows with your

business far outstrips the efforts of migrating to the AWS Cloud.

https://aws.amazon.com/lightsail/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/apprunner/
https://aws.amazon.com/amplify/

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 19

Contributors

The following individuals and organizations contributed to this document:

• Amir Khairalomoum, Senior Solutions Architect, AWS

• Dinesh Subramani, Senior Solutions Architect, AWS

• Jack Hemion, Senior Solutions Architect, AWS

• Jatin Joshi, Cloud Support Engineer, AWS

• Jorge Fonseca, Senior Solutions Architect, AWS

• Shinduri K S, Solutions Architect, AWS

Further reading

• Deploy Django-based application onto Amazon LightSail

• Deploying a high availability Drupal website to Elastic Beanstalk

• Deploying a high availability PHP application to Elastic Beanstalk

• Deploying a Node.js application with DynamoDB to Elastic Beanstalk

• Getting Started with Linux Web Applications in the AWS Cloud

• Host a Static Website

• Hosting a static website using Amazon S3

• Tutorial: Deploying an ASP.NET core application with Elastic Beanstalk

• Tutorial: How to deploy a .NET sample application using Elastic Beanstalk

Document versions

Date Description

August 20,

2021

Multiple sections and diagrams updated with new services, features,

and updated service limits.

https://aws.amazon.com/getting-started/hands-on/deploy-python-application/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/php-hadrupal-tutorial.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/php-ha-tutorial.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/nodejs-dynamodb-tutorial.html
https://aws.amazon.com/web-applications/gsg-webapps-linux/
https://aws.amazon.com/getting-started/hands-on/host-static-website/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/dotnet-core-tutorial.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_NET.quickstart.html

Amazon Web Services Web Application Hosting in the AWS Cloud

 Page 20

Date Description

September

2019

Updated icon label for “Caching with ElastiCache”

July 2017 Multiple sections added and updated for new services. Updated

diagrams for additional clarity and services. Addition of VPC as the

standard networking method in AWS in “Network Management.”

Added section on DDoS protection and mitigation in “Additional

Security Features.” Added a small section on serverless

architectures for web hosting.

September

2012

Multiple sections updated to improve clarity. Updated diagrams to

use AWS icons. Addition of “Managing Public DNS” section for detail

on Amazon Route 53. “Finding Other Hosts and Services” section

updated for clarity. “Database Configuration, Backup, and Failover”

section updated for clarity and DynamoDB. “Storage and Backup of

Data and Assets” section expanded to cover EBS Provisioned IOPS

volumes.

May 2010 First publication

	An overview of traditional web hosting
	Web application hosting in the cloud using AWS
	How AWS can solve common web application hosting issues
	A cost-effective alternative to oversized fleets needed to handle peaks
	A scalable solution to handling unexpected traffic peaks
	An on-demand solution for test, load, beta, and preproduction environments

	An AWS Cloud architecture for web hosting
	Key components of an AWS web hosting architecture
	Network management
	Content delivery
	Managing public DNS
	Host security
	Load balancing across clusters
	Finding other hosts and services
	Caching within the web application
	Database configuration, backup, and failover
	Amazon RDS
	Hosting a relational database management system (RDBMS) on an Amazon EC2 instance
	Non-relational databases

	Storage and backup of data and assets
	Automatically scaling the fleet
	Additional security features
	Failover with AWS

	Key considerations when using AWS for web hosting
	No more physical network appliances
	Firewalls everywhere
	Consider the availability of multiple data centers
	Treat hosts as ephemeral and dynamic
	Consider containers and serverless
	Consider automated deployment

	Conclusion
	Contributors
	Further reading
	Document versions

