Amazon Web Services

This video demonstrates how to use Amazon SageMaker JumpStart to quickly deploy pre-trained machine learning models. Ben Cashman, an AIML specialist Solutions architect at AWS, walks through using JumpStart in both the AWS console and SageMaker Studio. He shows how to launch foundation models for text summarization, deploy a sentiment analysis model to an endpoint, and make inference requests. The video highlights how SageMaker JumpStart can accelerate machine learning workflows by providing easy access to pre-trained models for various tasks like computer vision, natural language processing, and more. Cashman also covers important considerations like managing resources and deleting endpoints when finished. Overall, the video showcases how SageMaker JumpStart enables developers to rapidly prototype and build machine learning solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
1:01:07

Accelerate ML Model Delivery: Implementing End-to-End MLOps Solutions with Amazon SageMaker

Nov 22, 2024
VideoThumbnail
15:58

Revolutionizing Business Intelligence: Generative AI Features in Amazon QuickSight

Nov 22, 2024
VideoThumbnail
9:30

Deploying ASP.NET Core 6 Applications on AWS Elastic Beanstalk Linux: A Step-by-Step Guide for .NET Developers

Nov 22, 2024
VideoThumbnail
47:39

Simplifying Application Authorization: Amazon Verified Permissions at AWS re:Invent 2023

Nov 22, 2024
VideoThumbnail
2:51

How to Start, Connect, and Enroll Amazon EC2 Mac Instances into Jamf for Apple Mobile Device Management

Nov 22, 2024