跳至主要内容

Amazon Redshift

Amazon Redshift 流式摄取

通过将摄取的数据流式传输到数据仓库和数据可视化内容来生成近乎实时的见解

优势

以低延迟和高吞吐量处理来自多个来源的大量流数据,以便在几秒钟内获得见解。

直接从 Kinesis Data Streams 和 MSK 将流数据摄取到您的数据仓库中,无需在 Amazon S3 中暂存。

在 Amazon Redshift 内,使用熟悉的 SQL 对流数据执行详细分析。直接基于流数据定义和构建实体化视图。在 Amazon Redshift 中,使用用户定义的函数和存储过程,基于 MV 创建 MV,以创建和管理下游 ELT 管道。

通过在您选择的商业智能解决方案中可视化您的流媒体数据来生成见解。在 Amazon QuickSight 等解决方案中构建图表和其他视觉对象,Amazon QuickSight 是一种具有原生 ML 集成的统一无服务器商业智能解决方案,可在您的组织中实现数据驱动的决策。使用机器学习提供支持的 Amazon QuickSight Q 针对您的数据提出对话式问题,并通过相关可视化内容获得答案。

工作原理

 单击可放大图像

Architecture diagram illustrating AWS Redshift streaming ingestion. Shows data flow from IoT, application logs, CDC, and clickstream inputs through Amazon Kinesis Data Streams or Amazon MSK, then to Amazon Redshift for real-time analytics output.

使用案例

分析玩家的实时数据,以增加游戏内兑换、提高玩家留存率和优化游戏体验。

分析来自数以千计的物联网设备的数据,并在 Amazon Redshift 内利用机器学习(ML)改进运营、预测客户流失和实现业务增长。

一般客户会在单个会话中访问数十个网站,但营销人员通常只分析他们自己的网站。分析经过授权并摄取到仓库中的点击流数据,以评估客户的访问记录和行为。

通过访问和分析应用程序日志文件和网络日志中的流数据,开发人员和工程师们可以执行实时问题排查、交付更好的产品以及提示系统采取预防措施。

近乎实时地访问和可视化所有 POS 零售交易数据,以进行实时分析、报告和可视化。

找到今天要查找的内容了吗?

请提供您的意见,以便我们改进网页内容的质量。