Amazon Web Services

In this informative video, Mike and Tiffany explore the concept of Retrieval Augmented Generation (RAG) and its application in improving generative AI applications. They discuss how RAG can help overcome the problem of hallucinations in large language models by providing accurate, up-to-date information. The video breaks down the complexities of RAG, explaining how it combines vector databases with language models to enhance the accuracy and relevance of AI-generated responses. Using Amazon Bedrock as an example, they demonstrate how developers can easily implement RAG in their applications without having to manage the underlying infrastructure. This video provides valuable insights for developers and tech enthusiasts looking to understand and implement more reliable generative AI solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
gen-ai
Show 3 more

Up Next

VideoThumbnail
8:14

Membuat Sistem Analitik Danau Data Nirserver dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:45

Membuat Fitur Rekomendasi dengan Mudah Menggunakan Amazon Personalize (Tingkat 300)

Jun 26, 2025
VideoThumbnail
6:19

Membangun Back-end dari Web App Anda dengan Mudah (Tingkat 200)

Jun 26, 2025
VideoThumbnail
4:22

Membuat Aplikasi REST API Menggunakan Model Aplikasi Nirserver AWS dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:25

Membuat Basis Data MySQL dengan Amazon Relational Database (Tingkat 200)

Jun 26, 2025