Amazon Web Services

In this comprehensive video, AWS Machine Learning specialist Emily Webber explores various options for deploying foundation models on AWS, focusing on Amazon SageMaker. She covers online, offline, queued, embedded, and serverless application types, explaining their tradeoffs. The video demonstrates how to host distributed models across multiple accelerators and optimize performance through techniques like model compression. Emily provides a hands-on walkthrough of deploying a 175 billion parameter BLOOM model using SageMaker's large model inference container. She discusses key concepts like tensor parallelism and offers practical tips for efficient model deployment and serving. The video concludes with a demo of invoking the deployed model for inference.

product-information
skills-and-how-to
generative-ai
ai-ml
compute
Show 7 more

Up Next

VideoThumbnail
8:14

Membuat Sistem Analitik Danau Data Nirserver dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:45

Membuat Fitur Rekomendasi dengan Mudah Menggunakan Amazon Personalize (Tingkat 300)

Jun 26, 2025
VideoThumbnail
6:19

Membangun Back-end dari Web App Anda dengan Mudah (Tingkat 200)

Jun 26, 2025
VideoThumbnail
4:22

Membuat Aplikasi REST API Menggunakan Model Aplikasi Nirserver AWS dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:25

Membuat Basis Data MySQL dengan Amazon Relational Database (Tingkat 200)

Jun 26, 2025