Amazon Web Services

Discover the power of vector search with Amazon DocumentDB (with MongoDB compatibility) in this informative video. Senior Product Manager Inder demonstrates how to build a semantic search application using vector search capabilities. The presentation covers an introduction to Amazon DocumentDB, a deep dive into vector search, and a step-by-step guide to creating a semantic search app using DocumentDB and Amazon Bedrock. Inder showcases a live demo of a movie search application, highlighting the differences between traditional text search and semantic search. The video also explains the architecture behind semantic search and provides code samples for implementation. Learn why DocumentDB is an ideal choice for AI/ML workloads, offering flexible schema, rich querying capabilities, and cost-effective pricing models. This comprehensive guide is perfect for developers and data professionals looking to enhance their search capabilities with vector search technology.

Get started with free trial for Amazon DocumentDB: https://aws.amazon.com/documentdb/free-trial

product-information
skills-and-how-to
industry-agnostic
data
ai-ml
Show 5 more

Up Next

VideoThumbnail
8:14

Membuat Sistem Analitik Danau Data Nirserver dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:45

Membuat Fitur Rekomendasi dengan Mudah Menggunakan Amazon Personalize (Tingkat 300)

Jun 26, 2025
VideoThumbnail
6:19

Membangun Back-end dari Web App Anda dengan Mudah (Tingkat 200)

Jun 26, 2025
VideoThumbnail
4:22

Membuat Aplikasi REST API Menggunakan Model Aplikasi Nirserver AWS dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:25

Membuat Basis Data MySQL dengan Amazon Relational Database (Tingkat 200)

Jun 26, 2025