Amazon Web Services

This video demonstrates how to use Amazon SageMaker Pipelines and Autopilot to streamline machine learning workflows. Ben Cashman, an AI/ML Solutions Architect at AWS, walks through building an end-to-end pipeline to predict income levels using the UCI Adult Census dataset. The demo showcases how to automatically generate, evaluate, and deploy ML models using SageMaker's tools, highlighting features like model registry integration and explainability. Viewers will learn how to leverage these AWS services to accelerate model development and improve reproducibility in their ML projects. The video includes a step-by-step walkthrough of the pipeline creation process, from data preparation to model deployment, using both the SageMaker console and Jupyter notebooks.

product-information
skills-and-how-to
data
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
8:14

Membuat Sistem Analitik Danau Data Nirserver dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:45

Membuat Fitur Rekomendasi dengan Mudah Menggunakan Amazon Personalize (Tingkat 300)

Jun 26, 2025
VideoThumbnail
6:19

Membangun Back-end dari Web App Anda dengan Mudah (Tingkat 200)

Jun 26, 2025
VideoThumbnail
4:22

Membuat Aplikasi REST API Menggunakan Model Aplikasi Nirserver AWS dengan Mudah (Tingkat 300)

Jun 26, 2025
VideoThumbnail
4:25

Membuat Basis Data MySQL dengan Amazon Relational Database (Tingkat 200)

Jun 26, 2025