Amazon Web Services

In this AWS Summit ANZ 2022 session, Sara van de Moosdijk (Moose) presents a comprehensive guide on designing end-to-end MLOps architectures for organizations of varying sizes and maturity levels. She walks through the challenges of deploying and maintaining machine learning models in production, then introduces MLOps concepts and AWS services that can address these challenges. Moose provides detailed architecture diagrams for small, medium, and large MLOps setups, explaining key components like automated retraining pipelines, model registries, and monitoring tools. The session aims to help architects and developers implement effective MLOps practices using AWS services like SageMaker, Lambda, EventBridge, and CodePipeline. Moose emphasizes that MLOps is a journey, encouraging viewers to start with basic steps and gradually adopt more advanced features as needed.

product-information
skills-and-how-to
migration-and-modernization
ai-ml
devtools
Show 6 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025