Amazon Web Services

This video demonstrates how to use Amazon SageMaker JumpStart to quickly deploy pre-trained machine learning models. Ben Cashman, an AIML specialist Solutions architect at AWS, walks through using JumpStart in both the AWS console and SageMaker Studio. He shows how to launch foundation models for text summarization, deploy a sentiment analysis model to an endpoint, and make inference requests. The video highlights how SageMaker JumpStart can accelerate machine learning workflows by providing easy access to pre-trained models for various tasks like computer vision, natural language processing, and more. Cashman also covers important considerations like managing resources and deleting endpoints when finished. Overall, the video showcases how SageMaker JumpStart enables developers to rapidly prototype and build machine learning solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025