Amazon Web Services

In this informative video, Mike and Tiffany explore the concept of Retrieval Augmented Generation (RAG) and its application in improving generative AI applications. They discuss how RAG can help overcome the problem of hallucinations in large language models by providing accurate, up-to-date information. The video breaks down the complexities of RAG, explaining how it combines vector databases with language models to enhance the accuracy and relevance of AI-generated responses. Using Amazon Bedrock as an example, they demonstrate how developers can easily implement RAG in their applications without having to manage the underlying infrastructure. This video provides valuable insights for developers and tech enthusiasts looking to understand and implement more reliable generative AI solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
gen-ai
Show 3 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025