Amazon Web Services

In this informative session, Raghu Ramesha, a senior machine learning architect at Amazon, delves into the powerful capabilities of Amazon SageMaker for high-performance, cost-effective machine learning inference. He explains why customers choose SageMaker over DIY solutions, highlighting its managed infrastructure, automatic scaling, and deployment strategies. Raghu explores various deployment options including real-time, serverless, asynchronous, and batch inference, each tailored for different use cases. The presentation also covers cost optimization techniques such as multi-model endpoints, instance right-sizing, and SageMaker Savings Plans. Viewers will gain insights into best practices for maximizing performance while minimizing costs in machine learning deployments using Amazon SageMaker.

product-information
skills-and-how-to
cost-optimization
ai-ml
cost-mgmt
Show 4 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025