Amazon Web Services

In this comprehensive video, AWS generative AI expert Emily Webber demonstrates how to prepare data and train at scale using Amazon Web Services. She covers multiple options for data preparation, including S3 buckets, ECR images, FSx for Lustre, and SageMaker. Webber explains how to set up distributed file systems, use SageMaker warm pools for efficient development, and scale up training runs. The video includes a hands-on walkthrough of creating SageMaker warm pools and running them with FSx for Lustre, as well as troubleshooting tips for large-scale distributed training. Viewers will learn how to optimize their workflow for training foundation models and generative AI systems on AWS infrastructure.

product-information
skills-and-how-to
generative-ai
ai-ml
gen-ai
Show 7 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025