Amazon Web Services

This video explores implementing long-term memory in AI chatbots using Amazon Bedrock's Agents feature. It demonstrates how to create an agent with persistent memory capabilities both through the Amazon Bedrock console and programmatically using Python and boto3. The presenter explains why traditional large language models lack persistent memory and shows how Bedrock Agents can retain information across separate chat sessions. The video provides a step-by-step guide for developers looking to enhance AI applications with cross-session memory features, covering memory storage, retrieval, and integration into the AI's decision-making process. A practical demonstration showcases how the agent remembers user preferences from previous conversations, highlighting the potential for more personalized and context-aware AI interactions.

product-information
skills-and-how-to
generative-ai
ai-ml
serverless
Show 3 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025