Amazon Web Services

This video explains how to deploy machine learning models for real-time predictions using Amazon SageMaker. It covers creating an endpoint configuration, setting up an Amazon endpoint, and using Amazon API Gateway and Lambda functions to access the model. The video also discusses A/B testing different model variants in production using Amazon CloudWatch for performance comparison. This approach allows efficient testing and selection of the best-performing model version for real-world applications.

product-information
skills-and-how-to
generative-ai
ai-ml
serverless
Show 6 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025