Amazon Web Services

In this AWS re:Invent 2023 session, Victoria and Linda from AWS Developer Relations demonstrate how to unlock data insights using generative AI services. They showcase two approaches for retrieval-augmented generation (RAG): one using Amazon SageMaker and Amazon Kendra, and another utilizing Amazon Bedrock and vector databases. The presenters highlight the importance of customizing foundation models with enterprise data to mitigate hallucinations and improve accuracy. They provide live coding demos, showcasing the power of Amazon CodeWhisperer for efficient development. The session covers key AWS services like SageMaker, Kendra, Bedrock, and CodeWhisperer, emphasizing their roles in building powerful, customized AI applications. Attendees learn about different data preparation techniques, model deployment options, and the benefits of using vector databases for similarity search. The presenters stress the importance of choosing the right approach based on specific use cases and data types.

product-information
skills-and-how-to
reinvent
data
generative-ai
Show 11 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025