Amazon Web Services

Discover the power of vector search with Amazon DocumentDB (with MongoDB compatibility) in this informative video. Senior Product Manager Inder demonstrates how to build a semantic search application using vector search capabilities. The presentation covers an introduction to Amazon DocumentDB, a deep dive into vector search, and a step-by-step guide to creating a semantic search app using DocumentDB and Amazon Bedrock. Inder showcases a live demo of a movie search application, highlighting the differences between traditional text search and semantic search. The video also explains the architecture behind semantic search and provides code samples for implementation. Learn why DocumentDB is an ideal choice for AI/ML workloads, offering flexible schema, rich querying capabilities, and cost-effective pricing models. This comprehensive guide is perfect for developers and data professionals looking to enhance their search capabilities with vector search technology.

Get started with free trial for Amazon DocumentDB: https://aws.amazon.com/documentdb/free-trial

product-information
skills-and-how-to
industry-agnostic
data
ai-ml
Show 5 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025