Amazon Web Services

This video demonstrates how to use Amazon CloudWatch's log pattern analysis and anomaly detection features to identify unusual patterns in application logs. It showcases how machine learning can automatically surface anomalies, detect changes over time, and discover unknown error conditions in large volumes of log data. The presenter walks through using CloudWatch Log Insights to investigate issues, leveraging pattern analysis to quickly parse thousands of log events, and setting up anomaly detection to proactively monitor for unexpected behaviors. Key capabilities highlighted include comparing log patterns across time periods, inspecting anomalies, and integrating with CloudWatch alarms for critical applications. These powerful tools enable faster troubleshooting and improved operational visibility across AWS environments.

product-information
skills-and-how-to
data
analytics
machine-learning
Show 6 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025