Amazon Web Services

This video demonstrates how to use Amazon SageMaker Pipelines and Autopilot to streamline machine learning workflows. Ben Cashman, an AI/ML Solutions Architect at AWS, walks through building an end-to-end pipeline to predict income levels using the UCI Adult Census dataset. The demo showcases how to automatically generate, evaluate, and deploy ML models using SageMaker's tools, highlighting features like model registry integration and explainability. Viewers will learn how to leverage these AWS services to accelerate model development and improve reproducibility in their ML projects. The video includes a step-by-step walkthrough of the pipeline creation process, from data preparation to model deployment, using both the SageMaker console and Jupyter notebooks.

product-information
skills-and-how-to
data
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
30:23

T3-2 Amazon SageMaker Canvasで始めるノーコード機械学習 (Level 200)

Jun 27, 2025
VideoThumbnail
31:49

T2-3 AWS を使った生成 AI アプリケーション開発 (Level 300)

Jun 27, 2025
VideoThumbnail
26:05

T4-4: AWS 認定 受験準備の進め方 AWS Certified Solutions Architect – Associate 編 後半

Jun 26, 2025
VideoThumbnail
32:15

T3-1: はじめてのコンテナワークロード - AWS でのコンテナ活用の第一歩

Jun 26, 2025
VideoThumbnail
29:37

BOS-09: はじめてのサーバーレス - AWS Lambda でサーバーレスアプリケーション開発 (Level 200)

Jun 26, 2025