Amazon Web Services

In this informative video, Mike and Tiffany explore the concept of Retrieval Augmented Generation (RAG) and its application in improving generative AI applications. They discuss how RAG can help overcome the problem of hallucinations in large language models by providing accurate, up-to-date information. The video breaks down the complexities of RAG, explaining how it combines vector databases with language models to enhance the accuracy and relevance of AI-generated responses. Using Amazon Bedrock as an example, they demonstrate how developers can easily implement RAG in their applications without having to manage the underlying infrastructure. This video provides valuable insights for developers and tech enthusiasts looking to understand and implement more reliable generative AI solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
gen-ai
Show 3 more

Up Next

VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025
VideoThumbnail
28:50

완전관리형 컨테이너 서비스 Amazon ECS로 애플리케이션 쉽게 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:39

기초부터 배우는 AWS 핵심 서비스로 웹 애플리케이션 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:56

Amazon Bedrock을 활용하여 상품리뷰 요약과 비디오 숏폼 만들기 - AWS TechCamp

Jun 26, 2025