Amazon Web Services

In this informative session, Raghu Ramesha, a senior machine learning architect at Amazon, delves into the powerful capabilities of Amazon SageMaker for high-performance, cost-effective machine learning inference. He explains why customers choose SageMaker over DIY solutions, highlighting its managed infrastructure, automatic scaling, and deployment strategies. Raghu explores various deployment options including real-time, serverless, asynchronous, and batch inference, each tailored for different use cases. The presentation also covers cost optimization techniques such as multi-model endpoints, instance right-sizing, and SageMaker Savings Plans. Viewers will gain insights into best practices for maximizing performance while minimizing costs in machine learning deployments using Amazon SageMaker.

product-information
skills-and-how-to
cost-optimization
ai-ml
cost-mgmt
Show 4 more

Up Next

VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025
VideoThumbnail
28:50

완전관리형 컨테이너 서비스 Amazon ECS로 애플리케이션 쉽게 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:39

기초부터 배우는 AWS 핵심 서비스로 웹 애플리케이션 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:56

Amazon Bedrock을 활용하여 상품리뷰 요약과 비디오 숏폼 만들기 - AWS TechCamp

Jun 26, 2025