Amazon Web Services

Amazon SageMaker provides a comprehensive suite of MLOps tools to streamline the machine learning lifecycle. This video demonstrates how to leverage SageMaker to implement an end-to-end MLOps solution, enabling faster experimentation, training, testing, deployment, and governance of ML models at scale. Learn how to automate and standardize your ML workflows to productionize high-performance models efficiently without compromising on quality. The session covers practical examples and best practices for using SageMaker's MLOps capabilities to accelerate your organization's AI/ML initiatives.

product-information
skills-and-how-to
data
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
37:15

Contextual Retrieval 기반 RAG와 AWS 구성 방안

Jun 27, 2025
VideoThumbnail
40:18

ML 엔지니어를 클라우드 환경에서의 효율적인 LLM 배포 전략: vLLM, Amazon LMI, 그리고 SageMaker

Jun 27, 2025
VideoThumbnail
35:02

고급 프롬프트 엔지니어링 방법 및 Tool Use 활용 가이드

Jun 27, 2025
VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025