Amazon Web Services

This video from AWS re:Invent 2023 explores how to build production-ready semantic search and retrieval-augmented generation (RAG) applications. Speakers from Elastic, AWS, and Adobe discuss the challenges of integrating private data with large language models securely and at scale. They cover key components like vector search, natural language processing, and data security. Elastic demonstrates how their Elasticsearch Relevance Engine provides comprehensive capabilities for vector search, hybrid search, and data processing in a single API. AWS highlights their Amazon Bedrock service for accessing foundation models. Adobe shares a real-world use case of enriching e-commerce product catalogs using domain-specific language models. The speakers emphasize the importance of having a flexible platform to experiment with different approaches as generative AI applications evolve.

product-information
skills-and-how-to
retail
generative-ai
ai-ml
Show 6 more

Up Next

VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025
VideoThumbnail
28:50

완전관리형 컨테이너 서비스 Amazon ECS로 애플리케이션 쉽게 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:39

기초부터 배우는 AWS 핵심 서비스로 웹 애플리케이션 구축하기 - AWS TechCamp

Jun 26, 2025
VideoThumbnail
18:56

Amazon Bedrock을 활용하여 상품리뷰 요약과 비디오 숏폼 만들기 - AWS TechCamp

Jun 26, 2025