Amazon Web Services

Amazon SageMaker Studio offers a comprehensive web-based interface for end-to-end machine learning development. This demo showcases SageMaker Studio's wide range of tools for data preparation, model building, training, deployment, and management. It highlights key features like JumpStart, a model hub with pre-built solutions, and JupyterLab for collaborative data analysis and model development. The video demonstrates how SageMaker Studio integrates with other AWS services like EMR and Glue for data processing, and provides easy access to various data sources. It also shows capabilities for fine-tuning and deploying large language models with minimal code.

product-information
skills-and-how-to
generative-ai
ai-ml
analytics
Show 3 more

Up Next

VideoThumbnail
37:15

Contextual Retrieval 기반 RAG와 AWS 구성 방안

Jun 27, 2025
VideoThumbnail
40:18

ML 엔지니어를 클라우드 환경에서의 효율적인 LLM 배포 전략: vLLM, Amazon LMI, 그리고 SageMaker

Jun 27, 2025
VideoThumbnail
35:02

고급 프롬프트 엔지니어링 방법 및 Tool Use 활용 가이드

Jun 27, 2025
VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025