Amazon Web Services

In this video, Emily demonstrates how to get started with Amazon SageMaker Studio, a fully managed IDE for machine learning. She showcases the platform's ability to decouple the UI from applications, allowing users to browse foundation models, explore applications, and use various tools like Jupyter Lab and VS Code. Emily navigates through SageMaker Studio Online, highlighting features such as JumpStart, which provides access to many foundation models from leading providers. She demonstrates deploying and testing inference on a Mixrtal 8x7B Instruct model, showcasing SageMaker Studio's capabilities in handling multi-GPU machines and processing inference requests. The video serves as an introduction to SageMaker Studio's powerful features for machine learning development and model deployment.

product-information
skills-and-how-to
generative-ai
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
37:15

Contextual Retrieval 기반 RAG와 AWS 구성 방안

Jun 27, 2025
VideoThumbnail
40:18

ML 엔지니어를 클라우드 환경에서의 효율적인 LLM 배포 전략: vLLM, Amazon LMI, 그리고 SageMaker

Jun 27, 2025
VideoThumbnail
35:02

고급 프롬프트 엔지니어링 방법 및 Tool Use 활용 가이드

Jun 27, 2025
VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025