Amazon Web Services

This video demonstrates how to use Amazon SageMaker Pipelines and Autopilot to streamline machine learning workflows. Ben Cashman, an AI/ML Solutions Architect at AWS, walks through building an end-to-end pipeline to predict income levels using the UCI Adult Census dataset. The demo showcases how to automatically generate, evaluate, and deploy ML models using SageMaker's tools, highlighting features like model registry integration and explainability. Viewers will learn how to leverage these AWS services to accelerate model development and improve reproducibility in their ML projects. The video includes a step-by-step walkthrough of the pipeline creation process, from data preparation to model deployment, using both the SageMaker console and Jupyter notebooks.

product-information
skills-and-how-to
data
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
37:15

Contextual Retrieval 기반 RAG와 AWS 구성 방안

Jun 27, 2025
VideoThumbnail
40:18

ML 엔지니어를 클라우드 환경에서의 효율적인 LLM 배포 전략: vLLM, Amazon LMI, 그리고 SageMaker

Jun 27, 2025
VideoThumbnail
35:02

고급 프롬프트 엔지니어링 방법 및 Tool Use 활용 가이드

Jun 27, 2025
VideoThumbnail
30:02

Builders 온라인 시리즈 | Amazon VPC와 온프레미스 네트워크 연결하기

Jun 27, 2025
VideoThumbnail
26:52

Builders 온라인 시리즈 | 당신의 아키텍처는 Well-Architected 한가요?

Jun 27, 2025