Amazon Web Services

This video demonstrates how to use Amazon SageMaker JumpStart to quickly deploy pre-trained machine learning models. Ben Cashman, an AIML specialist Solutions architect at AWS, walks through using JumpStart in both the AWS console and SageMaker Studio. He shows how to launch foundation models for text summarization, deploy a sentiment analysis model to an endpoint, and make inference requests. The video highlights how SageMaker JumpStart can accelerate machine learning workflows by providing easy access to pre-trained models for various tasks like computer vision, natural language processing, and more. Cashman also covers important considerations like managing resources and deleting endpoints when finished. Overall, the video showcases how SageMaker JumpStart enables developers to rapidly prototype and build machine learning solutions.

product-information
skills-and-how-to
generative-ai
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
8:42

สร้าง Web application ใช้ AWS Amplify (Level 200)

Jun 26, 2025
VideoThumbnail
4:38

วิธีการสร้าง Amazon Machine Image (AMI) (Level 200)

Jun 26, 2025
VideoThumbnail
8:03

การย้ายข้อมูลบนระบบฐานข้อมูลด้วย AWS DMS และ AWS SCT (Level 200)

Jun 26, 2025
VideoThumbnail
8:24

เริ่มต้นใช้งาน Technology Serverless ด้วย AWS Lambda (Level 200)

Jun 26, 2025
VideoThumbnail
7:52

วิธีการเซ็ตอัพและการใช้งาน Amazon WorkSpaces (Level 200)

Jun 26, 2025