Amazon Web Services

In this informative session, Raghu Ramesha, a senior machine learning architect at Amazon, delves into the powerful capabilities of Amazon SageMaker for high-performance, cost-effective machine learning inference. He explains why customers choose SageMaker over DIY solutions, highlighting its managed infrastructure, automatic scaling, and deployment strategies. Raghu explores various deployment options including real-time, serverless, asynchronous, and batch inference, each tailored for different use cases. The presentation also covers cost optimization techniques such as multi-model endpoints, instance right-sizing, and SageMaker Savings Plans. Viewers will gain insights into best practices for maximizing performance while minimizing costs in machine learning deployments using Amazon SageMaker.

product-information
skills-and-how-to
cost-optimization
ai-ml
cost-mgmt
Show 4 more

Up Next

VideoThumbnail
8:42

สร้าง Web application ใช้ AWS Amplify (Level 200)

Jun 26, 2025
VideoThumbnail
4:38

วิธีการสร้าง Amazon Machine Image (AMI) (Level 200)

Jun 26, 2025
VideoThumbnail
8:03

การย้ายข้อมูลบนระบบฐานข้อมูลด้วย AWS DMS และ AWS SCT (Level 200)

Jun 26, 2025
VideoThumbnail
8:24

เริ่มต้นใช้งาน Technology Serverless ด้วย AWS Lambda (Level 200)

Jun 26, 2025
VideoThumbnail
7:52

วิธีการเซ็ตอัพและการใช้งาน Amazon WorkSpaces (Level 200)

Jun 26, 2025