Amazon Web Services

This video provides a comprehensive guide on getting started with Amazon SageMaker Studio, an integrated development environment for machine learning. It walks through the process of setting up a SageMaker domain, creating user profiles with appropriate permissions, and establishing shared spaces for collaborative work. The video explains how to launch SageMaker Studio and access its various features, including data preparation tools, pre-trained models, and MLOps capabilities. It emphasizes the importance of proper domain setup and user management to enable effective team collaboration and resource sharing within SageMaker Studio.

The tutorial demonstrates how to create and manage user profiles within a SageMaker domain, highlighting the ability to customize execution roles and access permissions for each user. It also showcases the shared spaces feature, which allows multiple users to work together in real-time on notebooks and share model artifacts seamlessly. The video concludes by showing how to launch SageMaker Studio and navigate its interface, providing a foundation for users to begin their machine learning projects using AWS's powerful ML development environment.

product-information
skills-and-how-to
data
ai-ml
sagemaker
Show 2 more

Up Next

VideoThumbnail
8:42

สร้าง Web application ใช้ AWS Amplify (Level 200)

Jun 26, 2025
VideoThumbnail
4:38

วิธีการสร้าง Amazon Machine Image (AMI) (Level 200)

Jun 26, 2025
VideoThumbnail
8:03

การย้ายข้อมูลบนระบบฐานข้อมูลด้วย AWS DMS และ AWS SCT (Level 200)

Jun 26, 2025
VideoThumbnail
8:24

เริ่มต้นใช้งาน Technology Serverless ด้วย AWS Lambda (Level 200)

Jun 26, 2025
VideoThumbnail
7:52

วิธีการเซ็ตอัพและการใช้งาน Amazon WorkSpaces (Level 200)

Jun 26, 2025