Amazon Web Services

This session introduces Machine Learning Operations (MLOps), focusing on the challenges of operationalizing AI and the differences between DevOps and MLOps practices. The presenter, John, discusses the importance of collaboration between data scientists, ML engineers, and DevOps teams to successfully implement MLOps. He covers key aspects such as data preparation, model training, deployment, and monitoring, emphasizing the need for automated workflows and governance. The talk also explores the four stages of MLOps maturity, from initial experimentation to scalable, production-ready systems. Throughout the presentation, John highlights how AWS services like SageMaker can facilitate MLOps processes and help organizations mature their ML practices.

product-information
skills-and-how-to
generative-ai
ai-ml
devtools
Show 4 more

Up Next

VideoThumbnail
8:42

สร้าง Web application ใช้ AWS Amplify (Level 200)

Jun 26, 2025
VideoThumbnail
4:38

วิธีการสร้าง Amazon Machine Image (AMI) (Level 200)

Jun 26, 2025
VideoThumbnail
8:03

การย้ายข้อมูลบนระบบฐานข้อมูลด้วย AWS DMS และ AWS SCT (Level 200)

Jun 26, 2025
VideoThumbnail
8:24

เริ่มต้นใช้งาน Technology Serverless ด้วย AWS Lambda (Level 200)

Jun 26, 2025
VideoThumbnail
7:52

วิธีการเซ็ตอัพและการใช้งาน Amazon WorkSpaces (Level 200)

Jun 26, 2025