- 生成式人工智能›
- Amazon Bedrock›
- Llama
Llama 3.3 简介
Llama 3.3 是一款纯文本的 70B 指令调整模型,与 Llama 3.1 70B 相比性能更强,在用于纯文本应用程序时,与 Llama 3.2 90B 相比性能也有所提高。Llama 3.3 70B 提供与 Llama 3.1 405B 相似的性能,同时只需要一小部分计算资源。
Llama 3.3 70B 的全面训练使其具备应对各种任务的强大理解和生成能力。该模型支持专为内容创作、企业应用程序和研究而设计的高性能对话式人工智能,提供高级语言理解功能,包括文本摘要、分类、情感分析和代码生成。
Llama 3.2 90B 是 Meta 推出的极为先进的模型,非常适合企业级应用程序。Llama 3.2 是第一个支持视觉任务的 Llama 模型,其全新模型架构可将图像编码器表示集成到语言模型中。该模型擅长处理常识、长篇文本生成、多语言翻译、编码、数学和高级推理。它还引入了图像推理功能,可实现复杂图像理解和视觉推理。该模型非常适合以下使用案例:图像字幕、图像文本检索、视觉基础、视觉问答和视觉推理以及文档视觉问答。
Llama 3.2 11B 非常适合内容创作、对话式 AI、语言理解以及需要视觉推理的企业应用程序。该模型在文本摘要、情感分析、代码生成和遵循指令方面表现出色,并具有对图像进行推理的能力。该模型非常适合以下使用案例:图像字幕、图像文本检索、视觉基础、视觉问答和视觉推理以及文档视觉问答。
Llama 3.2 3B 通过设备端处理提供更加个性化的 AI 体验。Llama 3.2 3B 专为需要低延迟推理和有限计算资源的应用程序而设计。它擅长处理文本摘要、分类和语言翻译任务。该模型非常适合以下使用案例:基于 AI 的移动写作助手和客户服务应用程序。
Llama 3.2 1B 是 Llama 3.2 模型系列中较为轻盈的模型,非常适合边缘设备和移动应用程序的检索和汇总。它支持设备端 AI 功能,同时可以保护用户隐私并最大限度地减少延迟。该模型非常适合以下使用案例:个人信息管理和多语言知识检索。
优势
LOREM IPSUM
认识 Llama
使用案例
Llama 模型擅长处理图像理解和视觉推理、语言细微差别、情境理解以及视觉数据分析、图像字幕、对话生成和翻译等复杂任务,并且可以无缝处理多步骤任务。Llama 模型非常适合的其他使用案例包括复杂的视觉推理和理解、图像文本检索、视觉基础、文档视觉问答、文本摘要和准确性、文本分类、情感分析和细微差别推理、语言建模、对话系统、代码生成和遵循指令。
模型版本
Llama 3.3 70B
一款纯文本的 70B 指令调整型模型,与 Llama 3.1 70B 相比性能更强,在用于纯文本应用程序时,与 Llama 3.2 90B 相比性能也有所提高。Llama 3.3 70B 提供与 Llama 3.1 405B 相似的性能,同时只需要一小部分计算资源。
最大令牌数:12.8 万
语言:英语、德语、法语、意大利语、葡萄牙语、西班牙语和泰语
支持微调:否
支持的使用案例:专为内容创作、企业应用程序和研究而设计的对话式人工智能,提供高级语言理解功能,包括文本摘要、分类、情感分析和代码生成。该模型还支持利用模型输出来改进其他模型的能力,包括合成数据生成和蒸馏
Llama 3.2 90B
同时接受文本和图像输入和输出的多模态模型。非常适合需要复杂视觉智能的应用程序,例如图像分析、文档处理、多模态聊天机器人和自主系统。
最大令牌数:12.8 万
语言:英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语
支持微调:是
支持的使用案例:图像理解、视觉推理和多模态交互,支持图像字幕、图像文本检索、视觉基础、视觉问答和文档视觉问答等高级应用程序,并具有从视觉和文本输入中推理和得出结论的独特能力
Llama 3.2 11B
同时接受文本和图像输入和输出的多模态模型。非常适合需要复杂视觉智能的应用程序,例如图像分析、文档处理和多模态聊天机器人。
最大令牌数:12.8 万
语言:英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
支持微调:是
支持的使用案例:图像理解、视觉推理和多模态交互,支持图像字幕、图像文本检索、视觉基础、视觉问答和文档视觉问答等高级应用程序
Llama 3.2 3B
纯文本轻量级模型,旨在提供极其准确、相关的结果。专为需要低延迟推理和有限计算资源的应用程序而设计。非常适合查询和提示重写、基于 AI 的移动写作助手和客户服务应用程序,尤其是在边缘设备上,其效率和低延迟可以无缝集成到各种应用程序,包括由 AI 驱动的移动写作助手和客户服务聊天机器人。
最大令牌数:12.8 万
语言:英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语
支持微调:是
支持的使用案例:高级文本生成、摘要、情感分析、情感智能、情境理解和常识推理
Nomura 在 Amazon Bedrock 中使用 Meta 的 Llama 模型来普及生成式人工智能
Nomura 执行董事兼企业架构师 Aniruddh Singh 概述了该金融机构使用 Amazon Bedrock 和 Meta 的 Llama 模型在全公司范围内实现生成式人工智能大众化的历程。Amazon Bedrock 为 Llama 等领先基础模型提供关键访问权限,从而实现无缝集成。Llama 为 Nomura 提供关键优势,包括更快的创新、透明度、偏差防护机制以及在文本摘要、代码生成、日志分析和文档处理方面的强大性能。
TaskUs 在 Amazon Bedrock 中使用 Meta 的 Llama 模型彻底改变了客户体验
TaskUs 是为世界上最具创新性的公司提供外包数字服务和下一代客户体验的领先提供商,它帮助其客户展示、保护和发展他们的品牌。其创新的 TaskGPT 平台由 Amazon Bedrock 和 Meta 的 Llama 模型提供支持,从而使团队成员能够提供卓越的服务。TaskUs 在 TaskGPT 上构建工具,利用 Amazon Bedrock 和 Llama 进行经济高效的释义、内容生成、理解和复杂的任务处理。