亚马逊AWS官方博客

Category: Analytics

使用 Apache Flink 与 Amazon Kinesis Data Analytics 实现流式 ETL

本文讨论了如何使用Apache Flink与Kinesis Data Analytics构建流式ETL管道。其中着重强调了如何构建可扩展解决方案,在解决流式摄取中部分高级用例的同时,保持较低的运营开销。这套解决方案将帮助大家快速实现流式数据的丰富与转换,并将其加载至数据湖、数据存储或者其他分析工具当中,且无需执行额外的ETL操作步骤。本文还探讨了如何通过监控与故障处理对应用程序加以扩展。

关于在 AWS 上运行 Apache Kafka 的最佳实践

在本文中,我们将讨论了在AWS云中运行Kafka的几种常见模式。AWS还提供另一种托管解决方案,即 Amazon Kinesis Data Streams。该方案无需为服务器的管理或扩展而分神,大家可以在几秒钟之内扩展流式管道规模且无任何停机,跨可用区数据复制将自动执行,以开箱即用的方式享受良好的安全保障,Kinesis Data Stream与Lambda、Redshift、Elasticsearch等多种AWS服务以及Storm、Spark、Flink等开源框架紧密集成。

为云端海量日志分析优化的分级存储 – Amazon Elasticsearch Service 中的 UltraWarm

我们正处于大数据和机器学习的时代。非结构化数据在数据中的占比越来越高,而在这些非结构化数据中,占据主导位置的是机器生成的日志数据。随着使用微服务,容器和机器学习构建越来越多的应用程序,机器生成的日志数据量已经呈现出指数增长的态势,因此对于日志的管理、分析、挖掘也提出了更高的挑战。为了快速解决运营和安全问题,对这些数据进行实时分析已变得至关重要。几年前,我们发布了Amazon Elasticsearch Service。它是一个完全托管的日志分析服务,使部署、管理和扩展Elasticsearch和Kibana变得更加容易。

通过数据湖利用好数据资产

AWS 首席执行官 Andy Jassy在re:Invent技术大会主题演讲中,围绕着转型从六个方面做了阐述:1、领导层协调一致;2、技术的深度和广度;3、架构和应用的现代化;4、规模化使用数据;5、采用机器学习创新;6、突破云迁移的阻碍。 今天我和您分享第四部分,讲述企业在数字化转型的过程中,如何通过向云迁移利用好企业的数据资产满意度。