亚马逊AWS官方博客

Tag: DBMS

通过机器学习自动优化 DBMS

本客座文章由卡内基梅隆大学的 Dana Van Aken、Geoff Gordon 和 Andy Pavlo 发布。本项目演示学术研究人员如何利用我们的 AWS Cloud Credits for Research Program 实现科学突破。点击:原文链接 数据库管理系统 (DBMS) 是所有数据密集型应用程序最重要的组成部分。它们可以处理大量数据和复杂工作负载。但它们拥有成百上千的配置“开关”,控制了诸如用于缓存的内存量以及将数据写入存储的频率等诸多因素,因此管理起来很困难。组织通常会聘请专家来帮助完成优化活动,但对许多组织来说专家的费用过于高昂。 卡内基梅隆大学数据库研究组的学生和研究人员开发了一款新工具 OtterTune,它可以针对 DBMS 配置开关自动查找较佳的设置。其目标是让每个人都可以轻松部署 DBMS,即使是毫无数据库管理专业知识的人。 与其他 DBMS 配置工具不同,OtterTune 利用在优化之前的 DBMS 部署期间获得的知识来优化新的部署。这可以显著缩短优化新 DBMS 部署所需的时间以及减少所需的资源。为此,OtterTune 维护了一个存储库,用于存储在之前的优化会话中收集的优化数据。它利用此类数据来构建机器学习 (ML) 模型,以捕获 DBMS 对不同配置的响应方式。OtterTune 使用这些模型来指导新应用程序的试验,进而推荐可改善最终目标 (例如,减少延迟或提高吞吐量) 的设置。 在本文中,我们将讨论 OtterTune ML 管道中的每一个组件,并演示这些组件如何彼此交互以优化 DBMS 配置。然后,我们将通过比较 OtterTune 推荐的最佳配置与数据库管理员 (DBA) 及其他自动优化工具选择的配置的性能,评估 OtterTune 对 MySQL 和 Postgres […]

Read More